These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38805983)

  • 1. Design and performance of an epithermal neutron detector based on PFN.
    Yang Y; Zhang X; Zhang Y; Tang B; Qu J; Qiu J; Fu C; Wang G
    Appl Radiat Isot; 2024 Aug; 210():111369. PubMed ID: 38805983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of pulsed neutron uranium logging instrument.
    Wang XG; Liu D; Zhang F
    Rev Sci Instrum; 2015 Mar; 86(3):034501. PubMed ID: 25832251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prompt gamma ray detection and imaging for boron neutron capture therapy using CdTe detector and novel detector shield - Monte Carlo study.
    Moktan H; Lee CL; Cho SH
    Med Phys; 2023 Mar; 50(3):1736-1745. PubMed ID: 36625477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.
    Liu HB; Brugger RM; Rorer DC; Tichler PR; Hu JP
    Med Phys; 1994 Oct; 21(10):1627-31. PubMed ID: 7869995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and performance of an epithermal neutron flux detector using
    Guan X; Gong Y; Murata I; Wang T
    Appl Radiat Isot; 2021 Oct; 176():109880. PubMed ID: 34365204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of a
    Guan X; Wu H; Bai R; Wu G; Yang W; Guo W; Wang H; Wang Y; Du J; Zhang L; Gu L
    Appl Radiat Isot; 2024 May; 207():111249. PubMed ID: 38428203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation-based design for an electron-linear-accelerator-driven subcritical neutron multiplier for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2018 Oct; 140():121-125. PubMed ID: 30015040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fission converter and metal-oxide-semiconductor field effect transistor study of thermal neutron flux distribution in an epithermal neutron therapy beam.
    Kaplan GI; Rosenfeld AB; Allen BJ; Coderre JA; Liu HB
    Med Phys; 1999 Sep; 26(9):1989-94. PubMed ID: 10505889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Note: Development of real-time epithermal neutron detector for boron neutron capture therapy.
    Tanaka H; Sakurai Y; Takata T; Watanabe T; Kawabata S; Suzuki M; Masunaga SI; Taki K; Akabori K; Watanabe K; Ono K
    Rev Sci Instrum; 2017 May; 88(5):056101. PubMed ID: 28571445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.
    Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G
    Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for determining density based on gamma ray and fast neutron detection using a Cs
    Zhang Q; Zhang F; Gardner RP; Yan H; Wu G; Tian L; Chen Q; Ti Y
    Appl Radiat Isot; 2018 Dec; 142():77-84. PubMed ID: 30273762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on the performance of an epithermal neutron flux monitor for BNCT.
    Guan X; Manabe M; Tamaki S; Liu S; Sato F; Murata I; Wang T
    Appl Radiat Isot; 2016 Jul; 113():28-32. PubMed ID: 27110926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation-based design of an electron-linear accelerator-based neutron source for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2020 Aug; 162():109203. PubMed ID: 32501225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beam port filters in a TRIGA MARK III nuclear reactor to produce epithermal neutrons for BNCT.
    Medina-Castro D; Vega-Carrillo HR; Galicia-Aragón J; Soto-Bernal TG; Baltazar-Raigosa A
    Appl Radiat Isot; 2022 Jan; 179():110018. PubMed ID: 34749092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.
    Schmitz T; Bassler N; Blaickner M; Ziegner M; Hsiao MC; Liu YH; Koivunoro H; Auterinen I; Serén T; Kotiluoto P; Palmans H; Sharpe P; Langguth P; Hampel G
    Med Phys; 2015 Jan; 42(1):400-11. PubMed ID: 25563280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of the epithermal neutron beam used for boron neutron capture therapy.
    Liu HB; Brugger RM; Greenberg DD; Rorer DC; Hu JP; Hauptman HM
    Int J Radiat Oncol Biol Phys; 1994 Mar; 28(5):1149-56. PubMed ID: 8175400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental neutron measurements around nuclear facilities with moderated-type neutron detector.
    Nakamura T; Kosako T; Iwai S
    Health Phys; 1984 Nov; 47(5):729-43. PubMed ID: 6511417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Geant4 application to characterise a prototype neutron detector based on three orthogonal
    Gracanin V; Guatelli S; Prokopovich D; Rosenfeld AB; Berry A
    Phys Med; 2017 Jan; 33():189-196. PubMed ID: 28057428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II).
    Clement SD; Choi JR; Zamenhof RG; Yanch JC; Harling OK
    Basic Life Sci; 1990; 54():51-69. PubMed ID: 2268248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits.
    Hervé M; Sauzet N; Santos D
    Phys Med; 2021 Aug; 88():148-157. PubMed ID: 34265549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.