BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38806036)

  • 1. Influence of peripheral axon geometry and local anatomy on magnetostimulation chronaxie.
    Ferris NG; Klein V; Guerin B; Wald LL; Davids M
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38806036
    [No Abstract]   [Full Text] [Related]  

  • 2. Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations.
    Davids M; Guérin B; Vom Endt A; Schad LR; Wald LL
    Magn Reson Med; 2019 Jan; 81(1):686-701. PubMed ID: 30094874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The discrepancy between human peripheral nerve chronaxie times as measured using magnetic and electric field stimuli: the relevance to MRI gradient coil safety.
    Recoskie BJ; Scholl TJ; Chronik BA
    Phys Med Biol; 2009 Oct; 54(19):5965-79. PubMed ID: 19759411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comments on 'the discrepancy between human peripheral nerve chronaxie times as measured using magnetic and electric field stimuli: the relevance to MRI gradient coil safety'.
    Patrick Reilly J
    Phys Med Biol; 2010 Feb; 55(4):L5-8. PubMed ID: 20124652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity analysis of neurodynamic and electromagnetic simulation parameters for robust prediction of peripheral nerve stimulation.
    Klein V; Davids M; Wald LL; Schad LR; Guérin B
    Phys Med Biol; 2018 Dec; 64(1):015005. PubMed ID: 30523884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body Models.
    Davids M; Guérin B; Malzacher M; Schad LR; Wald LL
    Sci Rep; 2017 Jul; 7(1):5316. PubMed ID: 28706244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging.
    Tan ET; Hua Y; Fiveland EW; Vermilyea ME; Piel JE; Park KJ; Ho VB; Foo TKF
    Magn Reson Med; 2020 Jan; 83(1):352-366. PubMed ID: 31385628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical measurements correlate with individual magnetostimulation thresholds for kHz-range homogeneous magnetic fields.
    Demirel OB; Kilic T; Çukur T; Saritas EU
    Med Phys; 2020 Apr; 47(4):1836-1844. PubMed ID: 31958146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple linear formulation for magnetostimulation specific to MRI gradient coils.
    Chronik BA; Rutt BK
    Magn Reson Med; 2001 May; 45(5):916-9. PubMed ID: 11323819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Huygens' surface approach to rapid characterization of peripheral nerve stimulation.
    Davids M; Guerin B; Wald LL
    Magn Reson Med; 2022 Jan; 87(1):377-393. PubMed ID: 34427346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric field calculation and peripheral nerve stimulation prediction for head and body gradient coils.
    Roemer PB; Wade T; Alejski A; McKenzie CA; Rutt BK
    Magn Reson Med; 2021 Oct; 86(4):2301-2315. PubMed ID: 34080744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory and motor stimulation thresholds of the ulnar nerve from electric and magnetic field stimuli: implications to gradient coil operation.
    Recoskie BJ; Scholl TJ; Zinke-Allmang M; Chronik BA
    Magn Reson Med; 2010 Dec; 64(6):1567-79. PubMed ID: 20939088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral nerve stimulation by gradient switching fields in magnetic resonance imaging.
    So PP; Stuchly MA; Nyenhuis JA
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1907-14. PubMed ID: 15536892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing selective stimulation of peripheral nerves with arrays of coils or surface electrodes using a linear peripheral nerve stimulation metric.
    Davids M; Guérin B; Klein V; Schmelz M; Schad LR; Wald LL
    J Neural Eng; 2020 Jan; 17(1):016029. PubMed ID: 31665707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral nerve stimulation informed design of a high-performance asymmetric head gradient coil.
    Davids M; Dietz P; Ruyters G; Roesler M; Klein V; Guérin B; Feinberg DA; Wald LL
    Magn Reson Med; 2023 Aug; 90(2):784-801. PubMed ID: 37052387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the threshold for peripheral nerve stimulation during gradient switching in whole body MR systems.
    Den Boer JA; Bourland JD; Nyenhuis JA; Ham CL; Engels JM; Hebrank FX; Frese G; Schaefer DJ
    J Magn Reson Imaging; 2002 May; 15(5):520-5. PubMed ID: 11997892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimizing electric fields and increasing peripheral nerve stimulation thresholds using a body gradient array coil.
    Babaloo R; Atalar E
    Magn Reson Med; 2024 Sep; 92(3):1290-1305. PubMed ID: 38624032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral nerve stimulation properties of head and body gradient coils of various sizes.
    Zhang B; Yen YF; Chronik BA; McKinnon GC; Schaefer DJ; Rutt BK
    Magn Reson Med; 2003 Jul; 50(1):50-8. PubMed ID: 12815678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation threshold comparison of time-varying magnetic pulses with different waveforms.
    Irnich W; Hebrank FX
    J Magn Reson Imaging; 2009 Jan; 29(1):229-36. PubMed ID: 19097100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral nerve stimulation-optimal gradient waveform design.
    Schulte RF; Noeske R
    Magn Reson Med; 2015 Aug; 74(2):518-22. PubMed ID: 25168778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.