These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38806107)

  • 1. Endothelial dysfunction in Sickle Cell Disease: Strategies for the treatment.
    Pavan AR; Terroni B; Dos Santos JL
    Nitric Oxide; 2024 Aug; 149():7-17. PubMed ID: 38806107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of vasculopathy in sickle cell disease and thalassemia.
    Morris CR
    Hematology Am Soc Hematol Educ Program; 2008; ():177-85. PubMed ID: 19074078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of novel small-molecule therapeutics targeting sickle cell vasculopathy.
    Kato GJ; Gladwin MT
    JAMA; 2008 Dec; 300(22):2638-46. PubMed ID: 19066384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sickle cell disease at the dawn of the molecular era.
    Abboud MR; Musallam KM
    Hemoglobin; 2009; 33 Suppl 1():S93-S106. PubMed ID: 20001639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sickle cell disease vasculopathy: a state of nitric oxide resistance.
    Wood KC; Hsu LL; Gladwin MT
    Free Radic Biol Med; 2008 Apr; 44(8):1506-28. PubMed ID: 18261470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sickle cell disease: role of reactive oxygen and nitrogen metabolites.
    Wood KC; Granger DN
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):926-32. PubMed ID: 17645642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sickle cell anemia and vascular dysfunction: the nitric oxide connection.
    Akinsheye I; Klings ES
    J Cell Physiol; 2010 Sep; 224(3):620-5. PubMed ID: 20578237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways to pulmonary hypertension in sickle cell disease: the search for prevention and early intervention.
    Shilo NR; Morris CR
    Expert Rev Hematol; 2017 Oct; 10(10):875-890. PubMed ID: 28817980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease.
    Morris CR; Kato GJ; Poljakovic M; Wang X; Blackwelder WC; Sachdev V; Hazen SL; Vichinsky EP; Morris SM; Gladwin MT
    JAMA; 2005 Jul; 294(1):81-90. PubMed ID: 15998894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability.
    Hsu LL; Champion HC; Campbell-Lee SA; Bivalacqua TJ; Manci EA; Diwan BA; Schimel DM; Cochard AE; Wang X; Schechter AN; Noguchi CT; Gladwin MT
    Blood; 2007 Apr; 109(7):3088-98. PubMed ID: 17158223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An update on arginine in sickle cell disease.
    Benites BD; Olalla-Saad ST
    Expert Rev Hematol; 2019 Apr; 12(4):235-244. PubMed ID: 30855194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-dependent impairment of vascular function in sickle cell disease.
    Aslan M; Freeman BA
    Free Radic Biol Med; 2007 Dec; 43(11):1469-83. PubMed ID: 17964418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease.
    Kato GJ; McGowan V; Machado RF; Little JA; Taylor J; Morris CR; Nichols JS; Wang X; Poljakovic M; Morris SM; Gladwin MT
    Blood; 2006 Mar; 107(6):2279-85. PubMed ID: 16291595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine therapy of transgenic-knockout sickle mice improves microvascular function by reducing non-nitric oxide vasodilators, hemolysis, and oxidative stress.
    Kaul DK; Zhang X; Dasgupta T; Fabry ME
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H39-47. PubMed ID: 18456737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular pathophysiology of sickle cell disease.
    Connes P; Renoux C; Joly P; Nader E
    Presse Med; 2023 Dec; 52(4):104202. PubMed ID: 37944640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association Between Nitric Oxide, Oxidative Stress, Eryptosis, Red Blood Cell Microparticles, and Vascular Function in Sickle Cell Anemia.
    Nader E; Romana M; Guillot N; Fort R; Stauffer E; Lemonne N; Garnier Y; Skinner SC; Etienne-Julan M; Robert M; Gauthier A; Cannas G; Antoine-Jonville S; Tressières B; Hardy-Dessources MD; Bertrand Y; Martin C; Renoux C; Joly P; Grau M; Connes P
    Front Immunol; 2020; 11():551441. PubMed ID: 33250889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel small molecule therapeutics for sickle cell disease: nitric oxide, carbon monoxide, nitrite, and apolipoprotein A-I.
    Kato GJ
    Hematology Am Soc Hematol Educ Program; 2008; ():186-92. PubMed ID: 19074079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intravascular hemolysis and the pathophysiology of sickle cell disease.
    Kato GJ; Steinberg MH; Gladwin MT
    J Clin Invest; 2017 Mar; 127(3):750-760. PubMed ID: 28248201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New strategies for the treatment of pulmonary hypertension in sickle cell disease : the rationale for arginine therapy.
    Morris CR
    Treat Respir Med; 2006; 5(1):31-45. PubMed ID: 16409014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.