These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38806184)

  • 21. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.
    Bonvallet PP; Schultz MJ; Mitchell EH; Bain JL; Culpepper BK; Thomas SJ; Bellis SL
    PLoS One; 2015; 10(3):e0122359. PubMed ID: 25793720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of fibrinogen concentration on fibrin/atelocollagen composite gel: an in vitro and in vivo study in rabbit calvarial bone defect.
    Kim BS; Kim HJ; Choi JG; You HK; Lee J
    Clin Oral Implants Res; 2015 Nov; 26(11):1302-8. PubMed ID: 25039258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells.
    Zhu Y; Liu T; Song K; Jiang B; Ma X; Cui Z
    J Mater Sci Mater Med; 2009 Mar; 20(3):799-808. PubMed ID: 19020954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of volume-stable adipose tissue constructs using polycaprolactone-based polyurethane scaffolds and fibrin hydrogels.
    Wittmann K; Storck K; Muhr C; Mayer H; Regn S; Staudenmaier R; Wiese H; Maier G; Bauer-Kreisel P; Blunk T
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E409-E418. PubMed ID: 24170732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells.
    Gurumurthy B; Bierdeman PC; Janorkar AV
    Dent Mater; 2016 Oct; 32(10):1270-1280. PubMed ID: 27524229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins.
    Hong JM; Kim BJ; Shim JH; Kang KS; Kim KJ; Rhie JW; Cha HJ; Cho DW
    Acta Biomater; 2012 Jul; 8(7):2578-86. PubMed ID: 22480947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvements of osteoblast adhesion, proliferation, and differentiation in vitro via fibrin network formation in collagen sponge scaffold.
    Kim BS; Kim JS; Lee J
    J Biomed Mater Res A; 2013 Sep; 101(9):2661-6. PubMed ID: 23413086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The osteogenic differentiation of adipose tissue-derived precursor cells in a 3D scaffold/matrix environment.
    Leong DT; Nah WK; Gupta A; Hutmacher DW; Woodruff MA
    Curr Drug Discov Technol; 2008 Dec; 5(4):319-27. PubMed ID: 19075612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties.
    Guneta V; Loh QL; Choong C
    J Biomed Mater Res A; 2016 May; 104(5):1090-101. PubMed ID: 26749566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cell function for soft tissue regeneration.
    Xu FT; Liang ZJ; Li HM; Peng QL; Huang MH; Li de Q; Liang YD; Chi GY; Li de H; Yu BC; Huang JR
    Oncotarget; 2016 Jun; 7(23):35390-403. PubMed ID: 27191987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polylactic-co-glycolic acid mesh coated with fibrin or collagen and biological adhesive substance as a prefabricated, degradable, biocompatible, and functional scaffold for regeneration of the urinary bladder wall.
    Salem SA; Hwei NM; Bin Saim A; Ho CC; Sagap I; Singh R; Yusof MR; Md Zainuddin Z; Idrus RB
    J Biomed Mater Res A; 2013 Aug; 101(8):2237-47. PubMed ID: 23349110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro vascularization of a combined system based on a 3D printing technique.
    Zhao X; Liu L; Wang J; Xu Y; Zhang W; Khang G; Wang X
    J Tissue Eng Regen Med; 2016 Oct; 10(10):833-842. PubMed ID: 24399638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Injectable cell/hydrogel microspheres induce the formation of fat lobule-like microtissues and vascularized adipose tissue regeneration.
    Yao R; Zhang R; Lin F; Luan J
    Biofabrication; 2012 Dec; 4(4):045003. PubMed ID: 23075755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold.
    Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M
    Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering adipose tissue from uncultured human adipose stromal vascular fraction on collagen matrix and gelatin sponge scaffolds.
    Lin SD; Huang SH; Lin YN; Wu SH; Chang HW; Lin TM; Chai CY; Lai CS
    Tissue Eng Part A; 2011 Jun; 17(11-12):1489-98. PubMed ID: 21247363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering.
    Vuornos K; Björninen M; Talvitie E; Paakinaho K; Kellomäki M; Huhtala H; Miettinen S; Seppänen-Kaijansinkko R; Haimi S
    Tissue Eng Part A; 2016 Mar; 22(5-6):513-23. PubMed ID: 26919401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells.
    Chung E; Rytlewski JA; Merchant AG; Dhada KS; Lewis EW; Suggs LJ
    Acta Biomater; 2015 Apr; 17():78-88. PubMed ID: 25600400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.
    Ryan AJ; O'Brien FJ
    Biomaterials; 2015 Dec; 73():296-307. PubMed ID: 26431909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid Synthetic-Biological Hydrogel System for Adipose Tissue Regeneration.
    Li S; Poche JN; Liu Y; Scherr T; McCann J; Forghani A; Smoak M; Muir M; Berntsen L; Chen C; Ravnic DJ; Gimble J; Hayes DJ
    Macromol Biosci; 2018 Nov; 18(11):e1800122. PubMed ID: 30247815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.
    Correia C; Bhumiratana S; Yan LP; Oliveira AL; Gimble JM; Rockwood D; Kaplan DL; Sousa RA; Reis RL; Vunjak-Novakovic G
    Acta Biomater; 2012 Jul; 8(7):2483-92. PubMed ID: 22421311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.