These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38806531)

  • 1. An fNIRS dataset for driving risk cognition of passengers in highly automated driving scenarios.
    Zhang X; Wang Q; Li J; Gao X; Li B; Nie B; Wang J; Zhou Z; Yang Y; Wang H
    Sci Data; 2024 May; 11(1):546. PubMed ID: 38806531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving risk cognition of passengers in highly automated driving based on the prefrontal cortex activity via fNIRS.
    Wang H; Zhang X; Li J; Li B; Gao X; Hao Z; Fu J; Zhou Z; Atia M
    Sci Rep; 2023 Sep; 13(1):15839. PubMed ID: 37739947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurophysiological correlates of age differences in driving behavior during concurrent subtask performance.
    Stojan R; Voelcker-Rehage C
    Neuroimage; 2021 Jan; 225():117492. PubMed ID: 33169696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional near-infrared spectroscopy in the evaluation of urban rail transit drivers' mental workload under simulated driving conditions.
    Li LP; Liu ZG; Zhu HY; Zhu L; Huang YC
    Ergonomics; 2019 Mar; 62(3):406-419. PubMed ID: 30307379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Do Drivers Perceive Risks During Automated Driving Scenarios? An fNIRS Neuroimaging Study.
    Perello-March J; Burns CG; Woodman R; Birrell S; Elliott MT
    Hum Factors; 2024 Sep; 66(9):2244-2263. PubMed ID: 37357740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding light on the prefrontal correlates of mental workload in simulated driving: a functional near-infrared spectroscopy study.
    Geissler CF; Schneider J; Frings C
    Sci Rep; 2021 Jan; 11(1):705. PubMed ID: 33436950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and classification of autonomous vehicle's ambiguous driving scenario.
    Baby T; Ippoliti HŞ; Wintersberger P; Zhang Y; Yoon SH; Lee J; Lee SC
    Accid Anal Prev; 2024 Jun; 200():107501. PubMed ID: 38471236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional near-infrared spectroscopy based discrimination of mental counting and no-control state for development of a brain-computer interface.
    Naseer N; Hong KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1780-3. PubMed ID: 24110053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mental workload is reflected in driver behaviour, physiology, eye movements and prefrontal cortex activation.
    Foy HJ; Chapman P
    Appl Ergon; 2018 Nov; 73():90-99. PubMed ID: 30098645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Framework for Generating Driving Safety Assessment Scenarios for Automated Vehicles.
    Ko W; Park S; Yun J; Park S; Yun I
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multimodal driver monitoring benchmark dataset for driver modeling in assisted driving automation.
    Dargahi Nobari K; Bertram T
    Sci Data; 2024 Mar; 11(1):327. PubMed ID: 38555295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Methodological Review of fNIRS in Driving Research: Relevance to the Future of Autonomous Vehicles.
    Balters S; Baker JM; Geeseman JW; Reiss AL
    Front Hum Neurosci; 2021; 15():637589. PubMed ID: 33967721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised fNIRS feature extraction with CAE and ESN autoencoder for driver cognitive load classification.
    Liu R; Reimer B; Song S; Mehler B; Solovey E
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33307543
    [No Abstract]   [Full Text] [Related]  

  • 14. Different brain activation patterns in the prefrontal area between self-paced and high-speed driving tasks.
    Hirano D; Kimura N; Yano H; Enoki M; Aikawa M; Goto Y; Taniguchi T
    J Biophotonics; 2022 Jun; 15(6):e202100295. PubMed ID: 35103406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral haemodynamics during simulated driving: Changes in workload are detectable with functional near infrared spectroscopy.
    Bloomfield PM; Green H; Gant N
    PLoS One; 2021; 16(3):e0248533. PubMed ID: 33711078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Takeover Time in Highly Automated Vehicles: Noncritical Transitions to and From Manual Control.
    Eriksson A; Stanton NA
    Hum Factors; 2017 Jun; 59(4):689-705. PubMed ID: 28124573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driving Performance After Self-Regulated Control Transitions in Highly Automated Vehicles.
    Eriksson A; Stanton NA
    Hum Factors; 2017 Dec; 59(8):1233-1248. PubMed ID: 28902526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In a heart beat: Using driver's physiological changes to determine the quality of a takeover in highly automated vehicles.
    Alrefaie MT; Summerskill S; Jackon TW
    Accid Anal Prev; 2019 Oct; 131():180-190. PubMed ID: 31302486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion sickness in passenger vehicles during test track operations.
    Jones MLH; Le VC; Ebert SM; Sienko KH; Reed MP; Sayer JR
    Ergonomics; 2019 Oct; 62(10):1357-1371. PubMed ID: 31282785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prefrontal Cortex Activation and Young Driver Behaviour: A fNIRS Study.
    Foy HJ; Runham P; Chapman P
    PLoS One; 2016; 11(5):e0156512. PubMed ID: 27227990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.