BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38806582)

  • 1. Deep-learning-based pelvic automatic segmentation in pelvic fractures.
    Lee JM; Park JY; Kim YJ; Kim KG
    Sci Rep; 2024 May; 14(1):12258. PubMed ID: 38806582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning to segment pelvic bones: large-scale CT datasets and baseline models.
    Liu P; Han H; Du Y; Zhu H; Li Y; Gu F; Xiao H; Li J; Zhao C; Xiao L; Wu X; Zhou SK
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):749-756. PubMed ID: 33864189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auto-segmentation of important centers of growth in the pediatric skeleton to consider during radiation therapy based on deep learning.
    Qiu W; Zhang W; Ma X; Kong Y; Shi P; Fu M; Wang D; Hu M; Zhou X; Dong Q; Zhou Q; Zhu J
    Med Phys; 2023 Jan; 50(1):284-296. PubMed ID: 36047281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate object localization facilitates automatic esophagus segmentation in deep learning.
    Li Z; Gan G; Guo J; Zhan W; Chen L
    Radiat Oncol; 2024 May; 19(1):55. PubMed ID: 38735947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A semiautomatic segmentation method framework for pelvic bone tumors based on CT-MR multimodal images.
    Ge Q; Xia T; Qiu Y; Liu J; Shang G; Liu B
    Int J Numer Method Biomed Eng; 2023 Oct; 39(10):e3697. PubMed ID: 36999653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images.
    Liu X; Sun Z; Han C; Cui Y; Huang J; Wang X; Zhang X; Wang X
    BMC Med Imaging; 2021 Nov; 21(1):170. PubMed ID: 34774001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection.
    Kitamura G
    Eur J Radiol; 2020 Sep; 130():109139. PubMed ID: 32623269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic performance of abdominal CT for diagnosis of pelvic fractures: comparison with pelvic CT.
    Yun SJ; Jin W; Yoon SH; Chun YS; Cha JG; Koo HS; Park SY; Park JS; Ryu KN; Lee SH; Shin JS
    Acta Radiol; 2016 Oct; 57(10):1244-50. PubMed ID: 26787672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning.
    Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y
    Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unified wavelet and Gaussian filtering for segmentation of CT images; application in segmentation of bone in pelvic CT images.
    Vasilache S; Ward K; Cockrell C; Ha J; Najarian K
    BMC Med Inform Decis Mak; 2009 Nov; 9 Suppl 1(Suppl 1):S8. PubMed ID: 19891802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic Hematomas on CT.
    Dreizin D; Zhou Y; Zhang Y; Tirada N; Yuille AL
    J Digit Imaging; 2020 Feb; 33(1):243-251. PubMed ID: 31172331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: Potential role in personalized forecasting and decision support.
    Dreizin D; Zhou Y; Chen T; Li G; Yuille AL; McLenithan A; Morrison JJ
    J Trauma Acute Care Surg; 2020 Mar; 88(3):425-433. PubMed ID: 32107356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting pelvic fracture on 3D-CT using deep convolutional neural networks with multi-orientated slab images.
    Ukai K; Rahman R; Yagi N; Hayashi K; Maruo A; Muratsu H; Kobashi S
    Sci Rep; 2021 Jun; 11(1):11716. PubMed ID: 34083655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atlas-based automatic planning and 3D-2D fluoroscopic guidance in pelvic trauma surgery.
    Han R; Uneri A; De Silva T; Ketcha M; Goerres J; Vogt S; Kleinszig G; Osgood G; Siewerdsen JH
    Phys Med Biol; 2019 May; 64(9):095022. PubMed ID: 30921783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Our results of surgical management of unstable pelvic ring injuries].
    Pavelka T; Dzupa V; Stulík J; Grill R; Báca V; Skála-Rosenbaum J
    Acta Chir Orthop Traumatol Cech; 2007 Feb; 74(1):19-28. PubMed ID: 17331451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net.
    González Sánchez JC; Magnusson M; Sandborg M; Carlsson Tedgren Å; Malusek A
    Phys Med; 2020 Jan; 69():241-247. PubMed ID: 31918376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework.
    Jodeiri A; Zoroofi RA; Hiasa Y; Takao M; Sugano N; Sato Y; Otake Y
    Comput Methods Programs Biomed; 2020 Feb; 184():105282. PubMed ID: 31896056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated organ segmentation in male pelvic CT images.
    Balagopal A; Kazemifar S; Nguyen D; Lin MH; Hannan R; Owrangi A; Jiang S
    Phys Med Biol; 2018 Dec; 63(24):245015. PubMed ID: 30523973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.