These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38806643)

  • 1. Metabolic plasticity drives mismatches in physiological traits between prey and predator.
    Affinito F; Kordas RL; Matias MG; Pawar S
    Commun Biol; 2024 May; 7(1):653. PubMed ID: 38806643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of predator-induced behavioural plasticity on the temperature dependence of predator-prey activity and population dynamics.
    Gvoždík L; Boukal DS
    J Anim Ecol; 2021 Feb; 90(2):503-514. PubMed ID: 33159686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal acclimation increases the stability of a predator-prey interaction in warmer environments.
    Sohlström EH; Archer LC; Gallo B; Jochum M; Kordas RL; Rall BC; Rosenbaum B; O'Gorman EJ
    Glob Chang Biol; 2021 Aug; 27(16):3765-3778. PubMed ID: 34009702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consistent temperature dependence of functional response parameters and their use in predicting population abundance.
    Archer LC; Sohlström EH; Gallo B; Jochum M; Woodward G; Kordas RL; Rall BC; O'Gorman EJ
    J Anim Ecol; 2019 Nov; 88(11):1670-1683. PubMed ID: 31283002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal plasticity and evolution shape predator-prey interactions differently in clear and turbid water bodies.
    Wang YJ; Tüzün N; Sentis A; Stoks R
    J Anim Ecol; 2022 Apr; 91(4):883-894. PubMed ID: 35220603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry.
    Janssens L; Van Dievel M; Stoks R
    Ecology; 2015 Dec; 96(12):3270-80. PubMed ID: 26909432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warming can destabilize predator-prey interactions by shifting the functional response from Type III to Type II.
    Daugaard U; Petchey OL; Pennekamp F
    J Anim Ecol; 2019 Oct; 88(10):1575-1586. PubMed ID: 31257583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prey-predator phenological mismatch under climate change.
    Damien M; Tougeron K
    Curr Opin Insect Sci; 2019 Oct; 35():60-68. PubMed ID: 31401300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.
    Klecka J; Boukal DS
    J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change effects on predator-prey interactions.
    Laws AN
    Curr Opin Insect Sci; 2017 Oct; 23():28-34. PubMed ID: 29129279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change enhances the negative effects of predation risk on an intermediate consumer.
    Miller LP; Matassa CM; Trussell GC
    Glob Chang Biol; 2014 Dec; 20(12):3834-44. PubMed ID: 24947942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foraging strategy mediates ectotherm predator-prey responses to climate warming.
    Twardochleb LA; Treakle TC; Zarnetske PL
    Ecology; 2020 Nov; 101(11):e03146. PubMed ID: 32726861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions.
    Sentis A; Gémard C; Jaugeon B; Boukal DS
    Glob Chang Biol; 2017 Jul; 23(7):2629-2640. PubMed ID: 27862723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergent impacts of cannibalism and size refuges in prey on intraguild predation systems.
    Rudolf VH; Armstrong J
    Oecologia; 2008 Oct; 157(4):675-86. PubMed ID: 18690480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonadditive impacts of temperature and basal resource availability on predator-prey interactions and phenotypes.
    Costa ZJ; Kishida O
    Oecologia; 2015 Aug; 178(4):1215-25. PubMed ID: 25820751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-down effects on antagonistic inducible defense and offense.
    Kishida O; Trussell GC; Nishimura K
    Ecology; 2009 May; 90(5):1217-26. PubMed ID: 19537543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What drives interaction strengths in complex food webs? A test with feeding rates of a generalist stream predator.
    Preston DL; Henderson JS; Falke LP; Segui LM; Layden TJ; Novak M
    Ecology; 2018 Jul; 99(7):1591-1601. PubMed ID: 29738085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Cues from Entomopathogenic Nematodes Vary Across Three Species with Different Foraging Strategies, Triggering Different Behavioral Responses in Prey and Competitors.
    Grunseich JM; Aguirre NM; Thompson MN; Ali JG; Helms AM
    J Chem Ecol; 2021 Nov; 47(10-11):822-833. PubMed ID: 34415500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mismatches in thermal performance between ectothermic predators and prey alter interaction strength and top-down control.
    Meehan ML; Lindo Z
    Oecologia; 2023 Apr; 201(4):1005-1015. PubMed ID: 37039893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours.
    Dinh Van K; Janssens L; Debecker S; Stoks R
    Aquat Toxicol; 2014 Jul; 152():215-21. PubMed ID: 24792152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.