These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38806987)
1. Application of microbially induced calcium carbonate precipitation (MICP) process in concrete self-healing and environmental restoration to facilitate carbon neutrality: a critical review. Chang J; Yang D; Lu C; Shu Z; Deng S; Tan L; Wen S; Huang K; Duan P Environ Sci Pollut Res Int; 2024 Jun; 31(26):38083-38098. PubMed ID: 38806987 [TBL] [Abstract][Full Text] [Related]
2. A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation. Song M; Ju T; Meng Y; Han S; Lin L; Jiang J Chemosphere; 2022 Mar; 290():133229. PubMed ID: 34896177 [TBL] [Abstract][Full Text] [Related]
3. Current challenges and future directions for bacterial self-healing concrete. Lee YS; Park W Appl Microbiol Biotechnol; 2018 Apr; 102(7):3059-3070. PubMed ID: 29487987 [TBL] [Abstract][Full Text] [Related]
4. Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. Taharia M; Dey D; Das K; Sukul U; Chen JS; Banerjee P; Dey G; Sharma RK; Lin PY; Chen CY Ecotoxicol Environ Saf; 2024 Feb; 271():115990. PubMed ID: 38262090 [TBL] [Abstract][Full Text] [Related]
5. Effects of biochar and magnesium oxide on cadmium immobilized by microbially induced carbonate: Mobilization or immobilization in alkaline agricultural soils? Wang Y; Xu J; Dong S; Li L; Wang S Environ Pollut; 2024 Oct; 358():124537. PubMed ID: 39002746 [TBL] [Abstract][Full Text] [Related]
6. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Chuo SC; Mohamed SF; Mohd Setapar SH; Ahmad A; Jawaid M; Wani WA; Yaqoob AA; Mohamad Ibrahim MN Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33167607 [TBL] [Abstract][Full Text] [Related]
7. Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. Kumar A; Song HW; Mishra S; Zhang W; Zhang YL; Zhang QR; Yu ZG Chemosphere; 2023 Mar; 318():137894. PubMed ID: 36657570 [TBL] [Abstract][Full Text] [Related]
8. Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation. Li Y; Zhang M; Wang X; Ai S; Meng X; Liu Z; Yang F; Cheng K J Hazard Mater; 2024 Sep; 476():135140. PubMed ID: 39002486 [TBL] [Abstract][Full Text] [Related]
9. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. Seifan M; Berenjian A World J Microbiol Biotechnol; 2018 Nov; 34(11):168. PubMed ID: 30387067 [TBL] [Abstract][Full Text] [Related]
10. Effect of sand minerals on microbially induced carbonate precipitation by denitrification. Nakano A Chemosphere; 2024 Sep; 363():142890. PubMed ID: 39025311 [TBL] [Abstract][Full Text] [Related]
11. Sodium citrate increases the aggregation capacity of calcium ions during microbial mineralization to accelerate the formation of calcium carbonate. Chen M; Cao D; Li B; Pang H; Zheng C Environ Res; 2023 May; 224():115479. PubMed ID: 36796605 [TBL] [Abstract][Full Text] [Related]
12. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Seifan M; Berenjian A Appl Microbiol Biotechnol; 2019 Jun; 103(12):4693-4708. PubMed ID: 31076835 [TBL] [Abstract][Full Text] [Related]
13. Genomic characterization of a novel ureolytic bacteria, Lysinibacillus capsici TSBLM, and its application to the remediation of acidic heavy metal-contaminated soil. Hu X; He B; Liu Y; Ma S; Yu C Sci Total Environ; 2024 Jun; 927():172170. PubMed ID: 38575034 [TBL] [Abstract][Full Text] [Related]
14. Microbial healing of cracks in concrete: a review. Joshi S; Goyal S; Mukherjee A; Reddy MS J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1511-1525. PubMed ID: 28900729 [TBL] [Abstract][Full Text] [Related]
15. Microbiologically induced calcite precipitation (MICP) in situ remediated heavy metal contamination in sludge nutrient soil. Ji G; Huan C; Zeng Y; Lyu Q; Du Y; Liu Y; Xu L; He Y; Tian X; Yan Z J Hazard Mater; 2024 Jul; 473():134600. PubMed ID: 38759409 [TBL] [Abstract][Full Text] [Related]
16. High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains. Harnpicharnchai P; Mayteeworakoon S; Kitikhun S; Chunhametha S; Likhitrattanapisal S; Eurwilaichitr L; Ingsriswang S Lett Appl Microbiol; 2022 Oct; 75(4):888-898. PubMed ID: 35611563 [TBL] [Abstract][Full Text] [Related]
17. Influence of biochar in the calcite precipitation of sandy soil using sporosarcina ureae. Shukla AK; Sharma AK J Environ Manage; 2024 May; 359():121048. PubMed ID: 38723498 [TBL] [Abstract][Full Text] [Related]
18. A critical review on microbial carbonate precipitation via denitrification process in building materials. Jain S; Fang C; Achal V Bioengineered; 2021 Dec; 12(1):7529-7551. PubMed ID: 34652267 [TBL] [Abstract][Full Text] [Related]
19. Microbially induced carbonate precipitation with Arthrobacter creatinolyticus: An eco-friendly strategy for mitigation of chromium contamination. Sujiritha PB; Vikash VL; Ponesakki G; Ayyadurai N; Kamini NR J Environ Manage; 2024 Aug; 365():121300. PubMed ID: 38955041 [TBL] [Abstract][Full Text] [Related]
20. Insights in MICP dynamics in urease-positive Staphylococcus sp. H6 and Sporosarcina pasteurii bacterium. Vaskevicius L; Malunavicius V; Jankunec M; Lastauskiene E; Talaikis M; Mikoliunaite L; Maneikis A; Gudiukaite R Environ Res; 2023 Oct; 234():116588. PubMed ID: 37423368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]