These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38807074)

  • 41. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species.
    Suriyagoda LD; Ryan MH; Renton M; Lambers H
    Ann Bot; 2012 Oct; 110(5):959-68. PubMed ID: 22847657
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Can Adverse Effects of Acidity and Aluminum Toxicity Be Alleviated by Appropriate Rootstock Selection in Cucumber?
    Rouphael Y; Rea E; Cardarelli M; Bitterlich M; Schwarz D; Colla G
    Front Plant Sci; 2016; 7():1283. PubMed ID: 27621740
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aluminum tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation.
    Giannakoula A; Moustakas M; Mylona P; Papadakis I; Yupsanis T
    J Plant Physiol; 2008 Mar; 165(4):385-96. PubMed ID: 17646031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of aluminium on the growth and mineral composition of Betula pendula Roth.
    Kidd PS; Proctor J
    J Exp Bot; 2000 Jun; 51(347):1057-66. PubMed ID: 10948233
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (
    Kaiwen G; Zisong X; Yuze H; Qi S; Yue W; Yanhui C; Jiechen W; Wei L; Huihui Z
    Plant Signal Behav; 2020 Dec; 15(12):1832373. PubMed ID: 33073686
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Liming can decrease legume crop yield and leaf gas exchange by enhancing root to shoot ABA signalling.
    Rothwell SA; Elphinstone ED; Dodd IC
    J Exp Bot; 2015 Apr; 66(8):2335-45. PubMed ID: 25740925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of exudation of organic acids and phosphate in aluminum tolerance of four tropical woody species.
    Nguyen NT; Nakabayashi K; Thompson J; Fujita K
    Tree Physiol; 2003 Oct; 23(15):1041-50. PubMed ID: 12975128
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Soil aluminium uptake and accumulation by Paspalum notatum.
    Huang J; Xia H; Li Z; Xiong Y; Kong G; Huang J
    Waste Manag Res; 2009 Oct; 27(7):668-75. PubMed ID: 19423590
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differences in Al tolerance between Plantago algarbiensis and P. almogravensis reflect their ability to respond to oxidative stress.
    Martins N; Osório ML; Gonçalves S; Osório J; Romano A
    Biometals; 2013 Jun; 26(3):427-37. PubMed ID: 23563731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aluminum resistance of cowpea as affected by phosphorus-deficiency stress.
    Jemo M; Abaidoo RC; Nolte C; Horst WJ
    J Plant Physiol; 2007 Apr; 164(4):442-51. PubMed ID: 16569463
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aluminum stress response in rice: effects on membrane lipid composition and expression of lipid biosynthesis genes.
    Huynh VB; Repellin A; Zuily-Fodil Y; Pham-Thi AT
    Physiol Plant; 2012 Nov; 146(3):272-84. PubMed ID: 22452575
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions.
    Zhu F; Yoh M; Gilliam FS; Lu X; Mo J
    PLoS One; 2013; 8(12):e82661. PubMed ID: 24376562
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fine root biomass, necromass and chemistry during seven years of elevated aluminium concentrations in the soil solution of a middle-aged Picea abies stand.
    Eldhuset TD; Lange H; de Wit HA
    Sci Total Environ; 2006 Oct; 369(1-3):344-56. PubMed ID: 16806407
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The complete chloroplast genome sequence of
    Ang L; Zhe H
    Mitochondrial DNA B Resour; 2021 Jan; 6(1):171-173. PubMed ID: 33537432
    [No Abstract]   [Full Text] [Related]  

  • 55. Variations in oil palm (Elaeis guineensis Jacq.) progeny response to high aluminium concentrations in solution culture.
    Cristancho RJ; Hanafi MM; Omar SR; Rafii MY
    Plant Biol (Stuttg); 2011 Mar; 13(2):333-42. PubMed ID: 21309980
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conostegia xalapensis (Melastomataceae): an aluminum accumulator plant.
    González-Santana IH; Márquez-Guzmán J; Cram-Heydrich S; Cruz-Ortega R
    Physiol Plant; 2012 Feb; 144(2):134-45. PubMed ID: 21973178
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley.
    Ahmed IM; Nadira UA; Cao F; He X; Zhang G; Wu F
    Planta; 2016 Apr; 243(4):973-85. PubMed ID: 26748913
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus.
    Navascués J; Pérez-Rontomé C; Sánchez DH; Staudinger C; Wienkoop S; Rellán-Álvarez R; Becana M
    New Phytol; 2012 Feb; 193(3):625-636. PubMed ID: 22136521
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity.
    Jiang HX; Yang LT; Qi YP; Lu YB; Huang ZR; Chen LS
    BMC Genomics; 2015 Nov; 16():949. PubMed ID: 26573913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity.
    Sun L; Tian J; Zhang H; Liao H
    J Exp Bot; 2016 Jun; 67(12):3655-64. PubMed ID: 27190050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.