These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38807234)
1. Reconstruction of a genome-scale metabolic model and in-silico flux analysis of Aspergillus tubingensis: a non-mycotoxinogenic citric acid-producing fungus. Kaushal M; Upton DJ; Gupta JK; Wood AJ; Srivastava S Biotechnol Biofuels Bioprod; 2024 May; 17(1):70. PubMed ID: 38807234 [TBL] [Abstract][Full Text] [Related]
2. Integration of Aspergillus niger transcriptomic profile with metabolic model identifies potential targets to optimise citric acid production from lignocellulosic hydrolysate. Upton DJ; Kaushal M; Whitehead C; Faas L; Gomez LD; McQueen-Mason SJ; Srivastava S; Wood AJ Biotechnol Biofuels Bioprod; 2022 Jan; 15(1):4. PubMed ID: 35418297 [TBL] [Abstract][Full Text] [Related]
3. Whole-genome sequencing of Aspergillus tubingensis G131 and overview of its secondary metabolism potential. Choque E; Klopp C; Valiere S; Raynal J; Mathieu F BMC Genomics; 2018 Mar; 19(1):200. PubMed ID: 29703136 [TBL] [Abstract][Full Text] [Related]
4. Rapid and marker-free gene replacement in citric acid-producing Aspergillus tubingensis (A. niger) WU-2223L by the CRISPR/Cas9 system-based genome editing technique using DNA fragments encoding sgRNAs. Yoshioka I; Kirimura K J Biosci Bioeng; 2021 Jun; 131(6):579-588. PubMed ID: 33612423 [TBL] [Abstract][Full Text] [Related]
5. An accurate description of Upton DJ; McQueen-Mason SJ; Wood AJ Biotechnol Biofuels; 2017; 10():258. PubMed ID: 29151887 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of a C Yang L; Christakou E; Vang J; Lübeck M; Lübeck PS Microb Cell Fact; 2017 Mar; 16(1):43. PubMed ID: 28288640 [TBL] [Abstract][Full Text] [Related]
7. In silico evolution of Upton DJ; McQueen-Mason SJ; Wood AJ Biotechnol Biofuels; 2020; 13():27. PubMed ID: 32123544 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Balagurunathan B; Jonnalagadda S; Tan L; Srinivasan R Microb Cell Fact; 2012 Feb; 11():27. PubMed ID: 22356827 [TBL] [Abstract][Full Text] [Related]
9. 13C metabolic flux analysis at a genome-scale. Gopalakrishnan S; Maranas CD Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840 [TBL] [Abstract][Full Text] [Related]
10. Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1. Lu Y; Ye C; Che J; Xu X; Shao D; Jiang C; Liu Y; Shi J Microb Cell Fact; 2019 Jan; 18(1):13. PubMed ID: 30678677 [TBL] [Abstract][Full Text] [Related]
11. Draft Genome Sequence of Aspergillus tubingensis WU-2223L, a Citric Acid-Producing Filamentous Fungus Belonging to Yoshioka I; Takahashi H; Kusuya Y; Yaguchi T; Kirimura K Microbiol Resour Announc; 2020 Aug; 9(33):. PubMed ID: 32817151 [No Abstract] [Full Text] [Related]
12. Generation of citric acid-hyperproducers independent of methanol effect by high-level expression of cexA encoding citrate exporter in Aspergillus tubingensis. Yoshioka I; Kirimura K Biosci Biotechnol Biochem; 2024 Sep; 88(10):1203-1211. PubMed ID: 39089868 [TBL] [Abstract][Full Text] [Related]
13. Integrated isotope-assisted metabolomics and (13)C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger. Lu H; Liu X; Huang M; Xia J; Chu J; Zhuang Y; Zhang S; Noorman H Microb Cell Fact; 2015 Sep; 14():147. PubMed ID: 26383080 [TBL] [Abstract][Full Text] [Related]
14. Co-consumption of glucose and xylose for organic acid production by Aspergillus carbonarius cultivated in wheat straw hydrolysate. Yang L; Lübeck M; Souroullas K; Lübeck PS World J Microbiol Biotechnol; 2016 Apr; 32(4):57. PubMed ID: 26925619 [TBL] [Abstract][Full Text] [Related]
15. Citric acid production by Aspergillus niger ATCC 9142 from a treated ethanol fermentation co-product using solid-state fermentation. Xie G; West TP Lett Appl Microbiol; 2009 May; 48(5):639-44. PubMed ID: 19416466 [TBL] [Abstract][Full Text] [Related]
16. Reconstruction and analysis of genome-scale metabolic model for thermophilic fungus Myceliophthora thermophila. Liu D; Xu Z; Li J; Liu Q; Yuan Q; Guo Y; Ma H; Tian C Biotechnol Bioeng; 2022 Jul; 119(7):1926-1937. PubMed ID: 35257374 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of cellulolytic enzyme production from intrageneric protoplast fusion of Aspergillus species and evaluating the hydrolysate scavenging activity. Goda DA; Shakam HM; Metwally ME; Abdelrasoul HA; Yacout MM Microb Cell Fact; 2024 Mar; 23(1):73. PubMed ID: 38431598 [TBL] [Abstract][Full Text] [Related]
18. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse. de Souza WR; Maitan-Alfenas GP; de Gouvêa PF; Brown NA; Savoldi M; Battaglia E; Goldman MH; de Vries RP; Goldman GH Fungal Genet Biol; 2013 Nov; 60():29-45. PubMed ID: 23892063 [TBL] [Abstract][Full Text] [Related]
19. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica. Ehsanipour M; Suko AV; Bura R J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive reconstruction and in silico analysis of Aspergillus niger genome-scale metabolic network model that accounts for 1210 ORFs. Lu H; Cao W; Ouyang L; Xia J; Huang M; Chu J; Zhuang Y; Zhang S; Noorman H Biotechnol Bioeng; 2017 Mar; 114(3):685-695. PubMed ID: 27696371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]