These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38807878)

  • 1. Impact of agricultural digitalization on carbon emission intensity of planting industry: Evidence from China.
    Wang D; Chen C; Zhu N; Xu X
    Heliyon; 2024 May; 10(10):e31215. PubMed ID: 38807878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the impact of digitization on the carbon emission intensity of agricultural production in China.
    Zhao L; Rao X; Lin Q
    Sci Total Environ; 2023 Dec; 903():166544. PubMed ID: 37678528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Relationships, Regional Differences, and Driving Mechanisms between Economic Development and Carbon Emissions from the Farming Industry: Empirical Evidence from Rural China.
    Liu W; Xu R; Deng Y; Lu W; Zhou B; Zhao M
    Int J Environ Res Public Health; 2021 Feb; 18(5):. PubMed ID: 33668785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Planting Industry Structural Changes on Carbon Emissions in the Three Northeast Provinces of China.
    Guo H; Xie S; Pan C
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33467543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon reduction effect of agricultural green production technology: A new evidence from China.
    Guo Z; Zhang X
    Sci Total Environ; 2023 May; 874():162483. PubMed ID: 36858221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of regional differences and spatial spillover effects of agricultural carbon emissions in China.
    Su L; Wang Y; Yu F
    Heliyon; 2023 Jun; 9(6):e16752. PubMed ID: 37303571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can urban digitalization significantly improve carbon emission efficiency?Evidence from 282 cities in China.
    Guo S; Ma H
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55214-55236. PubMed ID: 36884178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of logistic environment and spatial spillover on agricultural economic growth: An empirical study based on east, central and west China.
    Li X; Jiang J; Cifuentes-Faura J
    PLoS One; 2023; 18(7):e0287307. PubMed ID: 37494388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study on the Non-Linear Impact of Digital Technology Innovation on Carbon Emissions in the Transportation Industry.
    Chen X; Mao S; Lv S; Fang Z
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Spatiotemporal Evolution and Influencing Factors of Agricultural Carbon Emissions in the Counties of Zhejiang Province.
    Wen C; Zheng J; Hu B; Lin Q
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital Economy, Agricultural Technological Progress, and Agricultural Carbon Intensity: Evidence from China.
    Zhong R; He Q; Qi Y
    Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35682072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can the digitalization level of agriculture improve its ecological efficiency under carbon constraints: Evidence from China.
    Wang H; Li Z
    Heliyon; 2024 Mar; 10(5):e26750. PubMed ID: 38463886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence mechanism and spatial effect of carbon emission intensity in the agricultural sustainable supply: evidence from china's grain production.
    Li Z; Li J
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44442-44460. PubMed ID: 35133588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of carbon emissions trading policy on carbon emission of China's power industry: mechanism and spatial spillover effect.
    Ma X; Xu Q
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):74207-74222. PubMed ID: 37204586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial autocorrelation and driving factors of carbon emission density of crop production in China.
    Wu H; Zheng X; Zhou L; Meng Y
    Environ Sci Pollut Res Int; 2024 Apr; 31(18):27172-27191. PubMed ID: 38503959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spatiotemporal dynamic and spatial spillover effect of agricultural green technological progress in China.
    Deng Y; Cui Y; Khan SU; Zhao M; Lu Q
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):27909-27923. PubMed ID: 34982379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of agricultural modernization on agricultural carbon emissions in China: a study based on the spatial spillover effect.
    Yang F
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):91300-91314. PubMed ID: 37477811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-temporal comprehensive measurement of China's agricultural green development level and associated influencing factors.
    Cheng L; Gao Y; Dai X
    PLoS One; 2023; 18(8):e0288599. PubMed ID: 37540681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The green paradox puzzle: fiscal decentralisation, environmental regulation, and agricultural carbon intensity in China.
    He Q; Deng X; Li C; Yan Z; Kong F; Qi Y
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):78009-78028. PubMed ID: 35689770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional difference decomposition and its spatiotemporal dynamic evolution of Chinese agricultural carbon emission: considering carbon sink effect.
    Cui Y; Khan SU; Deng Y; Zhao M
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):38909-38928. PubMed ID: 33745048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.