These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Delineating groundwater potential zones using integrated remote sensing and GIS in Lahore, Pakistan. Yousaf B; Javid K; Mahmood S; Habib W; Hussain S Environ Monit Assess; 2024 Sep; 196(10):884. PubMed ID: 39225827 [TBL] [Abstract][Full Text] [Related]
3. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Moharir KN; Pande CB; Gautam VK; Singh SK; Rane NL Environ Res; 2023 Jul; 228():115832. PubMed ID: 37054834 [TBL] [Abstract][Full Text] [Related]
4. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques. Thilagavathi N; Subramani T; Suresh M; Karunanidhi D Environ Monit Assess; 2015 Apr; 187(4):164. PubMed ID: 25740689 [TBL] [Abstract][Full Text] [Related]
5. Groundwater potential mapping in Trans Yamuna Region, Prayagraj, using combination of geospatial technologies and AHP method. Swarnim ; Tripathi JN; Sonker I; Tiwari SP Environ Monit Assess; 2023 Oct; 195(11):1375. PubMed ID: 37882900 [TBL] [Abstract][Full Text] [Related]
6. Mapping coastal groundwater potential zones using remote sensing based AHP model in Al Qunfudhah region along Red Sea, Saudi Arabia. Alshehri F; Abd El-Hamid HT; Mohamed A Heliyon; 2024 Apr; 10(7):e28186. PubMed ID: 38560101 [TBL] [Abstract][Full Text] [Related]
7. Groundwater potential mapping in Jashore, Bangladesh. Fatema K; Joy MAR; Amin FMR; Sarkar SK Heliyon; 2023 Mar; 9(3):e13966. PubMed ID: 36925550 [TBL] [Abstract][Full Text] [Related]
8. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Shekar PR; Mathew A Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701 [TBL] [Abstract][Full Text] [Related]
9. Groundwater potential assessment in the Blue Nile River catchment, Ethiopia, using geospatial and multi-criteria decision-making techniques. Tamesgen Y; Atlabachew A; Jothimani M Heliyon; 2023 Jun; 9(6):e17616. PubMed ID: 37408881 [TBL] [Abstract][Full Text] [Related]
10. Multi-criteria decision making and Dempster-Shafer model-based delineation of groundwater prospect zones from a semi-arid environment. Pandey HK; Singh VK; Singh SK Environ Sci Pollut Res Int; 2022 Jul; 29(31):47740-47758. PubMed ID: 35184239 [TBL] [Abstract][Full Text] [Related]
11. GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: a case study from Southern Western Ghats, India. Arulbalaji P; Padmalal D; Sreelash K Sci Rep; 2019 Feb; 9(1):2082. PubMed ID: 30765790 [TBL] [Abstract][Full Text] [Related]
12. Application of analytical hierarchical process, multi-influencing factor, and geospatial techniques for groundwater potential zonation in a semi-arid region of western India. Yadav B; Malav LC; Jangir A; Kharia SK; Singh SV; Yeasin M; Nogiya M; Meena RL; Meena RS; Tailor BL; Mina BL; Alhar MSO; Jeon BH; Cabral-Pinto MMS; Yadav KK J Contam Hydrol; 2023 Feb; 253():104122. PubMed ID: 36563652 [TBL] [Abstract][Full Text] [Related]
13. Data on artificial recharge sites identified by geospatial tools in semi-arid region of Anantapur District, Andhra Pradesh, India. Rajasekhar M; Sudarsana Raju G; Siddi Raju R; Imran Basha U Data Brief; 2018 Aug; 19():462-474. PubMed ID: 29900343 [TBL] [Abstract][Full Text] [Related]
14. Identification and mapping of groundwater recharge zones using multi influencing factor and analytical hierarchy process. Meng F; Khan MI; Naqvi SAA; Sarwar A; Islam F; Ali M; Tariq A; Ullah S; Soufan W; Faraj TK Sci Rep; 2024 Aug; 14(1):19240. PubMed ID: 39164369 [TBL] [Abstract][Full Text] [Related]
15. Groundwater Potential Zone Mapping Using Analytical Hierarchy Process and GIS in Muga Watershed, Abay Basin, Ethiopia. Melese T; Belay T Glob Chall; 2022 Jan; 6(1):2100068. PubMed ID: 35024167 [TBL] [Abstract][Full Text] [Related]
16. Delineation of groundwater potential zonation using geoinformatics and AHP techniques with remote sensing data. Diriba D; Karuppannan S; Takele T; Husein M Heliyon; 2024 Feb; 10(3):e25532. PubMed ID: 38371977 [TBL] [Abstract][Full Text] [Related]
17. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Rashid M; Lone MA; Ahmed S Environ Monit Assess; 2012 Aug; 184(8):4829-39. PubMed ID: 21901310 [TBL] [Abstract][Full Text] [Related]
18. Assessment of groundwater recharge potential in a typical geological transition zone in Bauchi, NE-Nigeria using remote sensing/GIS and MCDA approaches. Abdullateef L; Tijani MN; Nuru NA; John S; Mustapha A Heliyon; 2021 Apr; 7(4):e06762. PubMed ID: 33997372 [TBL] [Abstract][Full Text] [Related]
19. Groundwater spring potential zonation using AHP and fuzzy-AHP in Eastern Himalayan region: Papum Pare district, Arunachal Pradesh, India. Ranjan P; Pandey PK; Pandey V Environ Sci Pollut Res Int; 2024 Feb; 31(7):10317-10333. PubMed ID: 37012568 [TBL] [Abstract][Full Text] [Related]
20. Application of remote sensing and electrical resistivity technique for delineating groundwater potential in North Western Nigeria. Osumeje JO; Eshimiakhe D; Oniku AS; Lawal KM Sci Rep; 2024 Sep; 14(1):22299. PubMed ID: 39333213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]