These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38808256)

  • 1. Structure-guided design and cloning of peptide inhibitors targeting CDK9/cyclin T1 protein-protein interaction.
    Taghizadeh MS; Taherishirazi M; Niazi A; Afsharifar A; Moghadam A
    Front Pharmacol; 2024; 15():1327820. PubMed ID: 38808256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational study and peptide inhibitors design for the CDK9 - cyclin T1 complex.
    Randjelović J; Erić S; Savić V
    J Mol Model; 2013 Apr; 19(4):1711-25. PubMed ID: 23296566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the CDK9-cyclin T1 protein-protein interaction as a new approach against triple-negative breast cancer.
    Cheng SS; Qu YQ; Wu J; Yang GJ; Liu H; Wang W; Huang Q; Chen F; Li G; Wong CY; Wong VKW; Ma DL; Leung CH
    Acta Pharm Sin B; 2022 Mar; 12(3):1390-1405. PubMed ID: 35530158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA.
    Garber ME; Mayall TP; Suess EM; Meisenhelder J; Thompson NE; Jones KA
    Mol Cell Biol; 2000 Sep; 20(18):6958-69. PubMed ID: 10958691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico design of small molecule inhibitors of CDK9/cyclin T1 interaction.
    Randjelovic J; Eric S; Savic V
    J Mol Graph Model; 2014 May; 50():100-12. PubMed ID: 24769691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, and biological evaluation of novel 4,4'-bipyridine derivatives acting as CDK9-Cyclin T1 protein-protein interaction inhibitors against triple-negative breast cancer.
    Gao G; Li J; Cao Y; Li X; Qian Y; Wang X; Li M; Qiu Y; Wu T; Wang L; Fang M
    Eur J Med Chem; 2023 Dec; 261():115858. PubMed ID: 37837671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A virtual screening investigation to identify bioactive natural compounds as potential inhibitors of cyclin-dependent kinase 9.
    Atiya A; Shahidi H; Mohammad T; Sharaf SE; Abdulmonem WA; Ashraf GM; Elasbali AM; Alharethi SH; Alhumaydhi FA; Baeesa SS; Rehan M; Shamsi A; Shahwan M
    J Biomol Struct Dyn; 2023 Nov; 41(19):10202-10213. PubMed ID: 36562191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of a tetrahydroisoquinoline-based CDK9-cyclin T1 protein-protein interaction inhibitor as an anti-proliferative and anti-migration agent against triple-negative breast cancer cells.
    Cheng S; Yang GJ; Wang W; Ma DL; Leung CH
    Genes Dis; 2022 Nov; 9(6):1674-1688. PubMed ID: 36157485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription.
    O'Keeffe B; Fong Y; Chen D; Zhou S; Zhou Q
    J Biol Chem; 2000 Jan; 275(1):279-87. PubMed ID: 10617616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of HyT-Based Degraders of CDK9-Cyclin T1 Complex.
    Lin R; Yang J; Liu T; Wang M; Ke C; Luo C; Lin J; Li J; Lin H
    Chem Biodivers; 2023 Aug; 20(8):e202300769. PubMed ID: 37349855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MD simulation of the Tat/Cyclin T1/CDK9 complex revealing the hidden catalytic cavity within the CDK9 molecule upon Tat binding.
    Asamitsu K; Hirokawa T; Okamoto T
    PLoS One; 2017; 12(2):e0171727. PubMed ID: 28178316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of novel CDK inhibitors via scaffold hopping from CAN508.
    Jing L; Tang Y; Xiao Z
    Bioorg Med Chem Lett; 2018 May; 28(8):1386-1391. PubMed ID: 29550093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interaction between cyclin T1/cdk9 and Puralpha determines the level of TNFalpha promoter activation by Tat in glial cells.
    Darbinian N; Sawaya BE; Khalili K; Jaffe N; Wortman B; Giordano A; Amini S
    J Neuroimmunol; 2001 Dec; 121(1-2):3-11. PubMed ID: 11730934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CDK9-cyclin T1 complex mediates saturated fatty acid-induced vascular calcification by inducing expression of the transcription factor CHOP.
    Shiozaki Y; Okamura K; Kohno S; Keenan AL; Williams K; Zhao X; Chick WS; Miyazaki-Anzai S; Miyazaki M
    J Biol Chem; 2018 Nov; 293(44):17008-17020. PubMed ID: 30209133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potent inhibitors targeting cyclin-dependent kinase 9 discovered
    Wang S; Liu F; Li P; Wang JN; Mo Y; Lin B; Mei Y
    Phys Chem Chem Phys; 2024 Feb; 26(6):5377-5386. PubMed ID: 38269624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recruitment of cyclin-dependent kinase 9 to nuclear compartments during cytomegalovirus late replication: importance of an interaction between viral pUL69 and cyclin T1.
    Feichtinger S; Stamminger T; Müller R; Graf L; Klebl B; Eickhoff J; Marschall M
    J Gen Virol; 2011 Jul; 92(Pt 7):1519-1531. PubMed ID: 21450947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel CDK9 inhibitor targeting the intramolecular hidden cavity of CDK9 induced by Tat binding.
    Asamitsu K; Hirokawa T; Okamoto T
    PLoS One; 2022; 17(11):e0277024. PubMed ID: 36378653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome.
    Sawaya BE; Khalili K; Gordon J; Taube R; Amini S
    J Biol Chem; 2000 Nov; 275(45):35209-14. PubMed ID: 10931842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation.
    Ivanov D; Kwak YT; Nee E; Guo J; García-Martínez LF; Gaynor RB
    J Mol Biol; 1999 Apr; 288(1):41-56. PubMed ID: 10329125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cdk9 and cyclin T subunits of TAK/P-TEFb localize to splicing factor-rich nuclear speckle regions.
    Herrmann CH; Mancini MA
    J Cell Sci; 2001 Apr; 114(Pt 8):1491-503. PubMed ID: 11282025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.