These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38808500)

  • 1. Piezoelectric Materials and Pyroelectric Materials:High Efficient Catalysts for Photoelectrochemical Water Splitting.
    Wang C; Liu Z
    Chemphyschem; 2024 Sep; 25(17):e202400227. PubMed ID: 38808500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting.
    Iqbal N; Khan I; Ali A; Qurashi A
    J Adv Res; 2022 Feb; 36():15-26. PubMed ID: 35127161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in TiO
    Zhang X; Zhang S; Cui X; Zhou W; Cao W; Cheng D; Sun Y
    Chem Asian J; 2022 Oct; 17(20):e202200668. PubMed ID: 35925726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Interface Engineering of Nanostructures for Photoelectrochemical Energy Harvesting Applications.
    Zi Y; Hu Y; Pu J; Wang M; Huang W
    Small; 2023 May; 19(19):e2208274. PubMed ID: 36776020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezotronics in Photo-Electrochemistry.
    Yu Y; Wang X
    Adv Mater; 2018 Oct; 30(43):e1800154. PubMed ID: 30009413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perovskite BaTaO
    Hojamberdiev M; Vargas R; Zhang F; Teshima K; Lerch M
    Adv Sci (Weinh); 2023 Nov; 10(33):e2305179. PubMed ID: 37852947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting.
    Kang Y; Chen R; Zhen C; Wang L; Liu G; Cheng HM
    Sci Bull (Beijing); 2020 Jul; 65(14):1163-1169. PubMed ID: 36659145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review.
    Siavash Moakhar R; Hosseini-Hosseinabad SM; Masudy-Panah S; Seza A; Jalali M; Fallah-Arani H; Dabir F; Gholipour S; Abdi Y; Bagheri-Hariri M; Riahi-Noori N; Lim YF; Hagfeldt A; Saliba M
    Adv Mater; 2021 Aug; 33(33):e2007285. PubMed ID: 34117806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting.
    Zhou J; Cheng H; Cheng J; Wang L; Xu H
    Small Methods; 2024 Feb; 8(2):e2300418. PubMed ID: 37421184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting.
    Qiu Y; Pan Z; Chen H; Ye D; Guo L; Fan Z; Yang S
    Sci Bull (Beijing); 2019 Sep; 64(18):1348-1380. PubMed ID: 36659664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting.
    Wang X; Ma S; Liu B; Wang S; Huang W
    Chem Commun (Camb); 2023 Aug; 59(67):10044-10066. PubMed ID: 37551587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem cells for unbiased photoelectrochemical water splitting.
    Liu B; Wang S; Zhang G; Gong Z; Wu B; Wang T; Gong J
    Chem Soc Rev; 2023 Jul; 52(14):4644-4671. PubMed ID: 37325843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting.
    Li Y; Li J; Yang W; Wang X
    Nanoscale Horiz; 2020 Jul; 5(8):1174-1187. PubMed ID: 32613990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts.
    Tao X; Zhao Y; Wang S; Li C; Li R
    Chem Soc Rev; 2022 May; 51(9):3561-3608. PubMed ID: 35403632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-ZnO Superstructure Decorated with Carbon-Based Material for Efficient Photoelectrochemical Water-Splitting under Visible-Light Irradiation.
    Pratomo U; Pratama RA; Irkham I; Sulaeman AP; Mulyana JY; Primadona I
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.