These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38808784)
1. Determination of fumonisin content in maize using near-infrared hyperspectral imaging (NIR-HSI) technology and chemometric methods. Conceição RRP; Queiroz VAV; Medeiros EP; Araújo JB; Araújo DDS; Miguel RA; Stoianoff MAR; Simeone MLF Braz J Biol; 2024; 84():e277974. PubMed ID: 38808784 [TBL] [Abstract][Full Text] [Related]
2. Multivariate method for prediction of fumonisins B1 and B2 and zearalenone in Brazilian maize using Near Infrared Spectroscopy (NIR). Tyska D; Mallmann AO; Vidal JK; Almeida CAA; Gressler LT; Mallmann CA PLoS One; 2021; 16(1):e0244957. PubMed ID: 33412558 [TBL] [Abstract][Full Text] [Related]
3. NIR-HSI as a tool to predict deoxynivalenol and fumonisins in maize kernels: a step forward in preventing mycotoxin contamination. Borràs-Vallverdú B; Marín S; Sanchis V; Gatius F; Ramos AJ J Sci Food Agric; 2024 Jul; 104(9):5495-5503. PubMed ID: 38363077 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Transmission Raman spectroscopy and NIR Hyperspectral Imaging for the assessment of content uniformity in solid oral dosage forms Belay NF; Busche S; Manici V; Shaukat M; Arndt SO; Schmidt C Eur J Pharm Sci; 2021 Nov; 166():105963. PubMed ID: 34352284 [TBL] [Abstract][Full Text] [Related]
5. A multivariate regression model for detection of fumonisins content in maize from near infrared spectra. Giacomo DR; Stefania del Z Food Chem; 2013 Dec; 141(4):4289-94. PubMed ID: 23993617 [TBL] [Abstract][Full Text] [Related]
6. Application of near-infrared hyperspectral (NIR) images combined with multivariate image analysis in the differentiation of two mycotoxicogenic Fusarium species associated with maize. da Conceição RRP; Simeone MLF; Queiroz VAV; de Medeiros EP; de Araújo JB; Coutinho WM; da Silva DD; de Araújo Miguel R; de Paula Lana UG; de Resende Stoianoff MA Food Chem; 2021 May; 344():128615. PubMed ID: 33223289 [TBL] [Abstract][Full Text] [Related]
7. [Study on the Rapid Evaluation of Total Volatile Basic Nitrogen (TVB-N) of Mutton by Hyperspectral Imaging Technique]. Zhu RG; Yao XD; Duan HW; Ma BX; Tang MX Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):806-10. PubMed ID: 27400528 [TBL] [Abstract][Full Text] [Related]
8. Rapid Detection of Volatile Oil in Yan H; Guo C; Shao Y; Ouyang Z Pharmacogn Mag; 2017; 13(51):439-445. PubMed ID: 28839369 [TBL] [Abstract][Full Text] [Related]
9. Rapid Detection of Single- and Co-Contaminant Aflatoxins and Fumonisins in Ground Maize Using Hyperspectral Imaging Techniques. Kim YK; Baek I; Lee KM; Kim G; Kim S; Kim SY; Chan D; Herrman TJ; Kim N; Kim MS Toxins (Basel); 2023 Jul; 15(7):. PubMed ID: 37505741 [TBL] [Abstract][Full Text] [Related]
10. Detection and identification of fungal growth on freeze-dried Agaricus bisporus using spectra and olfactory sensors. Wang L; Hu Q; Pei F; Mugambi MA; Yang W J Sci Food Agric; 2020 May; 100(7):3136-3146. PubMed ID: 32096232 [TBL] [Abstract][Full Text] [Related]
11. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging. Siripatrawan U; Makino Y Int J Food Microbiol; 2015 Apr; 199():93-100. PubMed ID: 25662486 [TBL] [Abstract][Full Text] [Related]
12. A rapid method for detection of fumonisins B1 and B2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere. Gaspardo B; Del Zotto S; Torelli E; Cividino SR; Firrao G; Della Riccia G; Stefanon B Food Chem; 2012 Dec; 135(3):1608-12. PubMed ID: 22953900 [TBL] [Abstract][Full Text] [Related]
13. Determination of hardness for maize kernels based on hyperspectral imaging. Qiao M; Xu Y; Xia G; Su Y; Lu B; Gao X; Fan H Food Chem; 2022 Jan; 366():130559. PubMed ID: 34289440 [TBL] [Abstract][Full Text] [Related]
14. Rapid determination of starch and alcohol contents in fermented grains by hyperspectral imaging combined with data fusion techniques. Liang Y; Tian J; Hu X; Huang Y; He K; Xie L; Yang H; Huang D; Zhou Y; Xia Y J Food Sci; 2024 Jun; 89(6):3540-3553. PubMed ID: 38720570 [TBL] [Abstract][Full Text] [Related]
15. Modelling and numerical methods for identifying low-level adulteration in ground beef using near-infrared hyperspectral imaging (NIR-HSI). Jia W; Ferragina A; Hamill R; Koidis A Talanta; 2024 Aug; 276():126199. PubMed ID: 38714010 [TBL] [Abstract][Full Text] [Related]
16. Rapid non-destructive monitoring and quality assessment of the fumigation process of Shanxi aged vinegar based on Vis-NIR hyperspectral imaging combined with multiple chemometric algorithms. Zhang X; Huang X; Harrington Aheto J; Xu F; Dai C; Ren Y; Wang L; Yu S Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 320():124539. PubMed ID: 38870693 [TBL] [Abstract][Full Text] [Related]
17. Protein content prediction in single wheat kernels using hyperspectral imaging. Caporaso N; Whitworth MB; Fisk ID Food Chem; 2018 Feb; 240():32-42. PubMed ID: 28946278 [TBL] [Abstract][Full Text] [Related]
18. A chemometric approach to assess the oil composition and content of microwave-treated mustard (Brassica juncea) seeds using Vis-NIR-SWIR hyperspectral imaging. Hamad R; Chakraborty SK Sci Rep; 2024 Jul; 14(1):15643. PubMed ID: 38977722 [TBL] [Abstract][Full Text] [Related]
19. Near-Infrared Hyperspectral Imaging as a Monitoring Tool for On-Demand Manufacturing of Inkjet-Printed Formulations. Stranzinger S; Wolfgang M; Klotz E; Scheibelhofer O; Ghiotti P; Khinast JG; Hsiao WK; Paudel A AAPS PharmSciTech; 2021 Aug; 22(6):211. PubMed ID: 34374899 [TBL] [Abstract][Full Text] [Related]
20. Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral imaging system. Yuan R; Liu G; He J; Ma C; Cheng L; Fan N; Ban J; Li Y; Sun Y J Food Sci; 2020 May; 85(5):1403-1410. PubMed ID: 32304238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]