BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38809047)

  • 1. The novel regulator HdrR controls the transcription of the heterodisulfide reductase operon
    Zhang S; Chen Y; Wang S; Yang Q; Leng H; Zhao P; Guo L; Dai L; Bai L; Cha G
    Appl Environ Microbiol; 2024 Jun; 90(6):e0069124. PubMed ID: 38809047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic, Biochemical, and Molecular Characterization of Methanosarcina barkeri Mutants Lacking Three Distinct Classes of Hydrogenase.
    Mand TD; Kulkarni G; Metcalf WW
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30012731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway.
    Welander PV; Metcalf WW
    J Bacteriol; 2008 Mar; 190(6):1928-36. PubMed ID: 18178739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic restrictions determine ammonia tolerance of methanogenic pathways in Methanosarcina barkeri.
    Yi Y; Dolfing J; Jin G; Fang X; Han W; Liu L; Tang Y; Cheng L
    Water Res; 2023 Apr; 232():119664. PubMed ID: 36775717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway.
    Welander PV; Metcalf WW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10664-9. PubMed ID: 16024727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different substrate regimes determine transcriptional profiles and gene co-expression in Methanosarcina barkeri (DSM 800).
    Lin Q; Fang X; Ho A; Li J; Yan X; Tu B; Li C; Li J; Yao M; Li X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7303-7316. PubMed ID: 28828628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane-Linked Mechanisms of Electron Uptake from Cathodes by Methanosarcina barkeri.
    Rowe AR; Xu S; Gardel E; Bose A; Girguis P; Amend JP; El-Naggar MY
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri.
    Kulkarni G; Mand TD; Metcalf WW
    mBio; 2018 Jul; 9(4):. PubMed ID: 29970471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri.
    Meuer J; Bartoschek S; Koch J; Künkel A; Hedderich R
    Eur J Biochem; 1999 Oct; 265(1):325-35. PubMed ID: 10491189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A.
    Rohlin L; Gunsalus RP
    BMC Microbiol; 2010 Feb; 10():62. PubMed ID: 20178638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate-dependent growth of
    Richter M; Sattler C; Schöne C; Rother M
    J Bacteriol; 2024 Feb; 206(2):e0036323. PubMed ID: 38305193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri.
    Kulkarni G; Kridelbaugh DM; Guss AM; Metcalf WW
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15915-20. PubMed ID: 19805232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of methylcobalamin: coenzyme M methyltransferase isoenzyme II in Methanosarcina barkeri.
    Yeliseev A; Gärtner P; Harms U; Linder D; Thauer RK
    Arch Microbiol; 1993; 159(6):530-6. PubMed ID: 8352643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of corrinoid antagonists on methanogen metabolism.
    Kenealy W; Zeikus JG
    J Bacteriol; 1981 Apr; 146(1):133-40. PubMed ID: 6783613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-dependent incorporation of carbon and hydrogen for lipid biosynthesis by Methanosarcina barkeri.
    Wu W; Meador TB; Könneke M; Elvert M; Wegener G; Hinrichs KU
    Environ Microbiol Rep; 2020 Oct; 12(5):555-567. PubMed ID: 32783290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species.
    Guss AM; Mukhopadhyay B; Zhang JK; Metcalf WW
    Mol Microbiol; 2005 Mar; 55(6):1671-80. PubMed ID: 15752192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri.
    Hutten TJ; Bongaerts HC; van der Drift C; Vogels GD
    Antonie Van Leeuwenhoek; 1980; 46(6):601-10. PubMed ID: 6786216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans.
    Schöne C; Poehlein A; Rother M
    Appl Environ Microbiol; 2023 Jul; 89(7):e0216122. PubMed ID: 37347168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic methane oxidation coupled to ferrihydrite reduction by Methanosarcina barkeri.
    Yu L; He D; Yang L; Rensing C; Zeng RJ; Zhou S
    Sci Total Environ; 2022 Oct; 844():157235. PubMed ID: 35817105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.