BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38809093)

  • 1. Electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid through a rough circular microchannel with surface charge-dependent slip.
    Li D; Dong J; Li H
    Electrophoresis; 2024 May; ():. PubMed ID: 38809093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromagnetohydrodynamic (EMHD) Flow in a Microchannel with Random Surface Roughness.
    Ma N; Sun Y; Jian Y
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates.
    Buren M; Jian Y
    Electrophoresis; 2015 Jul; 36(14):1539-48. PubMed ID: 25873183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternating Current Electroosmotic Flow of Maxwell Fluid in a Parallel Plate Microchannel with Sinusoidal Roughness.
    Chang L; Zhao G; Buren M; Sun Y; Jian Y
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38276832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic flow through a microparallel channel with 3D wall roughness.
    Chang L; Jian Y; Buren M; Sun Y
    Electrophoresis; 2016 Feb; 37(3):482-92. PubMed ID: 26333852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional Electromagnetohydrodynamic (EMHD) Flows of Fractional Viscoelastic Fluids with Electrokinetic Effects.
    Tian K; An S; Zhao G; Ding Z
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels.
    Hu Y; Werner C; Li D
    J Colloid Interface Sci; 2004 Dec; 280(2):527-36. PubMed ID: 15533426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of rough surface topography on gas slip flow in microchannels.
    Zhang C; Chen Y; Deng Z; Shi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016319. PubMed ID: 23005537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Random Roughness on the Electromagnetic Flow in a Micropipe.
    Wang Z; Sun Y; Jian Y
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroviscous effect on fluid drag in a microchannel with large zeta potential.
    Jing D; Bhushan B
    Beilstein J Nanotechnol; 2015; 6():2207-16. PubMed ID: 26734512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric study on instabilities in a two-layer electromagnetohydrodynamic channel flow confined between two parallel electrodes.
    Reddy PD; Bandyopadhyay D; Joo SW; Sharma A; Qian S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036313. PubMed ID: 21517593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid.
    Chokshi P; Bhade P; Kumaran V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023007. PubMed ID: 25768597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetohydrodynamic Electroosmotic Flow and Entropy Generation of Third-Grade Fluids in a Parallel Microchannel.
    Yang C; Jian Y; Xie Z; Li F
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32316085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels.
    Kim D; Darve E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051203. PubMed ID: 16802924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime.
    Ma N; Duan Z; Ma H; Su L; Liang P; Ning X; He B; Zhang X
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of gas flow and heat transfer in a rough microchannel using the lattice Boltzmann method.
    Dorari E; Saffar-Avval M; Mansoori Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063034. PubMed ID: 26764830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.