These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38809093)

  • 41. Hydrodynamic performance assessment of photocatalytic reactor with baffles and roughness in the flow path: A modelling approach with experimental validation.
    Rasul MG; Ahmed S; Sattar MA; Jahirul MI
    Heliyon; 2023 Sep; 9(9):e19623. PubMed ID: 37809384
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of nanometric-scale roughness on slip at the wall of simple fluids.
    Schmatko T; Hervet H; Léger L
    Langmuir; 2006 Aug; 22(16):6843-50. PubMed ID: 16863229
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of interfacial slip on the cross-stream migration of a drop in an unbounded Poiseuille flow.
    Mandal S; Bandopadhyay A; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023002. PubMed ID: 26382498
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluid Flow and Entropy Generation Analysis of Al
    Ma H; Duan Z; Su L; Ning X; Bai J; Lv X
    Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267453
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of pH on Effective Slip Length and Surface Charge at Solid-Oil Interfaces of Roughness-Induced Surfaces.
    Tian P; Li Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34206835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Critical instability and friction scaling of fluid flows through pipes with rough inner surfaces.
    Tao J
    Phys Rev Lett; 2009 Dec; 103(26):264502. PubMed ID: 20366316
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels.
    Park HM; Kim TW
    Anal Chim Acta; 2007 Jun; 593(2):171-7. PubMed ID: 17543604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calculation of effective slip on rough chemically heterogeneous surfaces using a homogenization approach.
    Lund NJ; Zhang XP; Mahelona K; Hendy SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046303. PubMed ID: 23214673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical analysis of the chemically reactive EMHD flow of a nanofluid past a bi-directional Riga plate influenced by velocity slips and convective boundary conditions.
    Algehyne EA; Alharbi AF; Saeed A; Dawar A; Kumam P; Galal AM
    Sci Rep; 2022 Sep; 12(1):15849. PubMed ID: 36151361
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influences of slip and Cu-blood nanofluid in a physiological study of cilia.
    Sadaf H; Nadeem S
    Comput Methods Programs Biomed; 2016 Jul; 131():169-80. PubMed ID: 27265057
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface charge-dependent hydrodynamic properties of an electroosmotic slip flow.
    Rezaei M; Azimian AR; Pishevar AR
    Phys Chem Chem Phys; 2018 Dec; 20(48):30365-30375. PubMed ID: 30489580
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulations of Flows via CFD in Microchannels for Characterizing Entrance Region and Developing New Correlations for Hydrodynamic Entrance Length.
    Ray DR; Das DK
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512729
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of couette shear flow between two sinusoidal walls.
    Jabbarzadeh A; Atkinson JD; Tanner RI
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):690-9. PubMed ID: 11046312
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Asymptotic behaviour of Stokes flow in a thin domain with a moving rough boundary.
    Fabricius J; Koroleva YO; Tsandzana A; Wall P
    Proc Math Phys Eng Sci; 2014 Jul; 470(2167):20130735. PubMed ID: 25002820
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal and Flow Analysis of Fully Developed Electroosmotic Flow in Parallel-Plate Micro- and Nanochannels with Surface Charge-Dependent Slip.
    Chang L; Sun Y; Buren M; Jian Y
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of thermal jump and inclined magnetic field on peristaltic transport of Jeffrey fluid with silver nanoparticle in the eccentric annulus.
    Kotnurkar AS; Talawar VT
    Heliyon; 2022 Sep; 8(9):e10543. PubMed ID: 36119891
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Turbulent flow in smooth and rough pipes.
    Allen JJ; Shockling MA; Kunkel GJ; Smits AJ
    Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):699-714. PubMed ID: 17244585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inertial migration of an elastic capsule in a Poiseuille flow.
    Shin SJ; Sung HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046321. PubMed ID: 21599309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of bottom roughness on scalar transport in aquatic ecosystems: implications for reproduction and recruitment in the benthos.
    Quinn NP; Ackerman JD
    J Theor Biol; 2015 Mar; 369():59-66. PubMed ID: 25596514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.