These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38809175)

  • 1. Investigation of the Affinity of Aptamers for Bacteria by Surface Plasmon Resonance Imaging Using Nanosomes.
    Manceau M; Farre C; Lagarde F; Mathey R; Buhot A; Vidic J; Léguillier V; Hou Y; Chaix C
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29645-29656. PubMed ID: 38809175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance.
    Chang AL; McKeague M; Smolke CD
    Methods Enzymol; 2014; 549():451-66. PubMed ID: 25432760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver decahedral nanoparticles empowered SPR imaging-SELEX for high throughput screening of aptamers with real-time assessment.
    Jia W; Li H; Wilkop T; Liu X; Yu X; Cheng Q; Xu D; Chen HY
    Biosens Bioelectron; 2018 Jun; 109():206-213. PubMed ID: 29567565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance imaging (SPRi) for analysis of DNA aptamer:β-conglutin interactions.
    Jauset Rubio M; Svobodová M; Mairal T; O'Sullivan CK
    Methods; 2016 Mar; 97():20-6. PubMed ID: 26515644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination terminal fixed region screening and high-throughput kinetic determination of aptamer for lipocalin-1 by surface plasmon resonance imaging.
    Jia W; Lu Z; Yang H; Li H; Xu D
    Anal Chim Acta; 2018 Dec; 1043():158-166. PubMed ID: 30392664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips.
    Wang Z; Wilkop T; Xu D; Dong Y; Ma G; Cheng Q
    Anal Bioanal Chem; 2007 Oct; 389(3):819-25. PubMed ID: 17673982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food Sensing: Aptamer-Based Trapping of Bacillus cereus Spores with Specific Detection via Real Time PCR in Milk.
    Fischer C; Hünniger T; Jarck JH; Frohnmeyer E; Kallinich C; Haase I; Hahn U; Fischer M
    J Agric Food Chem; 2015 Sep; 63(36):8050-7. PubMed ID: 26306797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells.
    Hamula CL; Peng H; Wang Z; Newbigging AM; Tyrrell GJ; Li XF; Le XC
    J Mol Evol; 2015 Dec; 81(5-6):194-209. PubMed ID: 26538121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection, characterization, and application of DNA aptamers for detection of Mycobacterium tuberculosis secreted protein MPT64.
    Sypabekova M; Bekmurzayeva A; Wang R; Li Y; Nogues C; Kanayeva D
    Tuberculosis (Edinb); 2017 May; 104():70-78. PubMed ID: 28454652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of highly specific aptamers to Vibrio parahaemolyticus using cell-SELEX powered by functionalized graphene oxide and rolling circle amplification.
    Song S; Wang X; Xu K; Li Q; Ning L; Yang X
    Anal Chim Acta; 2019 Apr; 1052():153-162. PubMed ID: 30685034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of RNA aptamers against the M. tuberculosis EsxG protein using surface plasmon resonance-based SELEX.
    Ngubane NA; Gresh L; Pym A; Rubin EJ; Khati M
    Biochem Biophys Res Commun; 2014 Jun; 449(1):114-9. PubMed ID: 24813997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting.
    Dwivedi HP; Smiley RD; Jaykus LA
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3677-86. PubMed ID: 23494620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
    Tang Q; Su X; Loh KP
    J Colloid Interface Sci; 2007 Nov; 315(1):99-106. PubMed ID: 17689549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.
    Stoltenburg R; Schubert T; Strehlitz B
    PLoS One; 2015; 10(7):e0134403. PubMed ID: 26221730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target Affinity and Structural Analysis for a Selection of Norovirus Aptamers.
    Schilling-Loeffler K; Rodriguez R; Williams-Woods J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for Improving Aptamer Binding Affinity.
    Hasegawa H; Savory N; Abe K; Ikebukuro K
    Molecules; 2016 Mar; 21(4):421. PubMed ID: 27043498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and characterization of DNA aptamers specific for Listeria species.
    Suh SH; Dwivedi HP; Choi SJ; Jaykus LA
    Anal Biochem; 2014 Aug; 459():39-45. PubMed ID: 24857773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer selection by direct microfluidic recovery and surface plasmon resonance evaluation.
    Dausse E; Barré A; Aimé A; Groppi A; Rico A; Ainali C; Salgado G; Palau W; Daguerre E; Nikolski M; Toulmé JJ; Di Primo C
    Biosens Bioelectron; 2016 Jun; 80():418-425. PubMed ID: 26874109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance investigation of RNA aptamer-RNA ligand interactions.
    Di Primo C; Dausse E; Toulmé JJ
    Methods Mol Biol; 2011; 764():279-300. PubMed ID: 21748648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.