These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38809180)
1. Injectable PEG Hydrogels with Tissue-Like Viscoelasticity Formed through Reversible Alendronate-Calcium Phosphate Crosslinking for Cell-Material Interactions. Yu H; Yan Z; Dreiss CA; Gaitano GG; Jarvis JA; Gentleman E; da Silva RMP; Grigoriadis AE Adv Healthc Mater; 2024 Sep; 13(22):e2400472. PubMed ID: 38809180 [TBL] [Abstract][Full Text] [Related]
2. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement. Rödel M; Teßmar J; Groll J; Gbureck U Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213 [TBL] [Abstract][Full Text] [Related]
3. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Nam S; Stowers R; Lou J; Xia Y; Chaudhuri O Biomaterials; 2019 Apr; 200():15-24. PubMed ID: 30743050 [TBL] [Abstract][Full Text] [Related]
4. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Xu Q; A S; Gao Y; Guo L; Creagh-Flynn J; Zhou D; Greiser U; Dong Y; Wang F; Tai H; Liu W; Wang W; Wang W Acta Biomater; 2018 Jul; 75():63-74. PubMed ID: 29803782 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841 [TBL] [Abstract][Full Text] [Related]
6. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Naghizadeh Z; Karkhaneh A; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097 [TBL] [Abstract][Full Text] [Related]
7. Avidity-controlled hydrogels for injectable co-delivery of induced pluripotent stem cell-derived endothelial cells and growth factors. Mulyasasmita W; Cai L; Dewi RE; Jha A; Ullmann SD; Luong RH; Huang NF; Heilshorn SC J Control Release; 2014 Oct; 191():71-81. PubMed ID: 24848744 [TBL] [Abstract][Full Text] [Related]
8. Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels. Schweikle M; Bjørnøy SH; van Helvoort ATJ; Haugen HJ; Sikorski P; Tiainen H Acta Biomater; 2019 May; 90():132-145. PubMed ID: 30905863 [TBL] [Abstract][Full Text] [Related]
9. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Chu W; Huang Y; Yang C; Liao Y; Zhang X; Yan M; Cui S; Zhao C Int J Pharm; 2017 Jan; 516(1-2):352-363. PubMed ID: 27887884 [TBL] [Abstract][Full Text] [Related]
10. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. Yang J; Han CR; Duan JF; Xu F; Sun RC ACS Appl Mater Interfaces; 2013 Apr; 5(8):3199-207. PubMed ID: 23534336 [TBL] [Abstract][Full Text] [Related]
11. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations. Chu S; Maples MM; Bryant SJ Acta Biomater; 2020 Jun; 109():37-50. PubMed ID: 32268243 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition. Kim J; Kong YP; Niedzielski SM; Singh RK; Putnam AJ; Shikanov A Soft Matter; 2016 Feb; 12(7):2076-85. PubMed ID: 26750719 [TBL] [Abstract][Full Text] [Related]
13. Crosslinking characteristics of and cell adhesion to an injectable poly(propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system. Shung AK; Behravesh E; Jo S; Mikos AG Tissue Eng; 2003 Apr; 9(2):243-54. PubMed ID: 12740087 [TBL] [Abstract][Full Text] [Related]
15. Attachment and spatial organisation of human mesenchymal stem cells on poly(ethylene glycol) hydrogels. Chahal AS; Schweikle M; Heyward CA; Tiainen H J Mech Behav Biomed Mater; 2018 Aug; 84():46-53. PubMed ID: 29734041 [TBL] [Abstract][Full Text] [Related]
16. A highly transparent tri-polymer complex Yadav I; Purohit SD; Singh H; Das N; Roy P; Mishra NC Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34525462 [TBL] [Abstract][Full Text] [Related]
17. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery. Selvam S; Pithapuram MV; Victor SP; Muthu J Colloids Surf B Biointerfaces; 2015 Feb; 126():35-43. PubMed ID: 25543981 [TBL] [Abstract][Full Text] [Related]
18. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Cai Z; Zhang H; Wei Y; Wu M; Fu A Biomater Sci; 2019 Aug; 7(8):3143-3157. PubMed ID: 31168540 [TBL] [Abstract][Full Text] [Related]
19. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Shin H; Quinten Ruhé P; Mikos AG; Jansen JA Biomaterials; 2003 Aug; 24(19):3201-11. PubMed ID: 12763447 [TBL] [Abstract][Full Text] [Related]
20. Long-term delivery of alendronate through an injectable tetra-PEG hydrogel to promote osteoporosis therapy. Li D; Zhou J; Zhang M; Ma Y; Yang Y; Han X; Wang X Biomater Sci; 2020 Jun; 8(11):3138-3146. PubMed ID: 32352105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]