These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38809313)
1. Soil compaction reversed the effect of arbuscular mycorrhizal fungi on soil hydraulic properties. David P; Jana R; Radka S; Jan J; Michael B Mycorrhiza; 2024 Jul; 34(4):361-368. PubMed ID: 38809313 [TBL] [Abstract][Full Text] [Related]
2. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Calvo-Polanco M; Molina S; Zamarreño AM; García-Mina JM; Aroca R Plant Cell Physiol; 2014 May; 55(5):1017-29. PubMed ID: 24553847 [TBL] [Abstract][Full Text] [Related]
3. An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. Pauwels R; Graefe J; Bitterlich M Mycorrhiza; 2023 Jun; 33(3):165-179. PubMed ID: 36976365 [TBL] [Abstract][Full Text] [Related]
4. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Köhl L; Lukasiewicz CE; van der Heijden MG Plant Cell Environ; 2016 Jan; 39(1):136-46. PubMed ID: 26147222 [TBL] [Abstract][Full Text] [Related]
5. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Bowles TM; Barrios-Masias FH; Carlisle EA; Cavagnaro TR; Jackson LE Sci Total Environ; 2016 Oct; 566-567():1223-1234. PubMed ID: 27266519 [TBL] [Abstract][Full Text] [Related]
6. In Vivo Modulation of Arbuscular Mycorrhizal Symbiosis and Soil Quality by Fungal P Solubilizers. Della Mónica IF; Godeas AM; Scervino JM Microb Ecol; 2020 Jan; 79(1):21-29. PubMed ID: 31218384 [TBL] [Abstract][Full Text] [Related]
7. Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Baghaie AH; Aghili F; Jafarinia R Environ Sci Pollut Res Int; 2019 Oct; 26(30):30794-30807. PubMed ID: 31444728 [TBL] [Abstract][Full Text] [Related]
8. Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato. Bitterlich M; Sandmann M; Graefe J Front Plant Sci; 2018; 9():154. PubMed ID: 29503655 [TBL] [Abstract][Full Text] [Related]
9. UPTAKE AND DISTRIBUTION OF RADIOSTRONTIUM IN TOMATO TREATED WITH ARBUSCULAR MYCORRHIZAL FUNGI. Dulanská S; Gomola I; Gubišová M; Ondreičková K; Pánik J; Mátel Ľ; Horník M Radiat Prot Dosimetry; 2022 Aug; 198(9-11):720-725. PubMed ID: 36005952 [TBL] [Abstract][Full Text] [Related]
11. Effects of the synergistic treatments of arbuscular mycorrhizal fungi and trehalose on adaptability to salt stress in tomato seedlings. Chen G; Yang A; Wang J; Ke L; Chen S; Li W Microbiol Spectr; 2024 Mar; 12(3):e0340423. PubMed ID: 38259091 [TBL] [Abstract][Full Text] [Related]
12. The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Majewska ML; Rola K; Zubek S Mycorrhiza; 2017 Feb; 27(2):83-94. PubMed ID: 27581153 [TBL] [Abstract][Full Text] [Related]
13. Microbial necromass and glycoproteins for determining soil carbon formation under arbuscular mycorrhiza symbiosis. Zhou J; Bilyera N; Guillaume T; Yang H; Li FM; Shi L Sci Total Environ; 2024 Dec; 955():176732. PubMed ID: 39395500 [TBL] [Abstract][Full Text] [Related]
14. Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Säle V; Palenzuela J; Azcón-Aguilar C; Sánchez-Castro I; da Silva GA; Seitz B; Sieverding E; van der Heijden MGA; Oehl F Mycorrhiza; 2021 Oct; 31(5):559-576. PubMed ID: 34327560 [TBL] [Abstract][Full Text] [Related]
15. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies. Ramírez-Viga TK; Aguilar R; Castillo-Argüero S; Chiappa-Carrara X; Guadarrama P; Ramos-Zapata J Mycorrhiza; 2018 Aug; 28(5-6):477-493. PubMed ID: 29869188 [TBL] [Abstract][Full Text] [Related]
16. Atmospheric drought and low light impede mycorrhizal effects on leaf photosynthesis-a glasshouse study on tomato under naturally fluctuating environmental conditions. Bitterlich M; Franken P; Graefe J Mycorrhiza; 2019 Jan; 29(1):13-28. PubMed ID: 30382414 [TBL] [Abstract][Full Text] [Related]
17. Herbivory and Soil Water Availability Induce Changes in Arbuscular Mycorrhizal Fungal Abundance and Composition. Allsup CM; Lankau RA; Paige KN Microb Ecol; 2022 Jul; 84(1):141-152. PubMed ID: 34432103 [TBL] [Abstract][Full Text] [Related]
18. Rhizophagus irregularis MUCL 41833 transitorily reduces tomato bacterial wilt incidence caused by Ralstonia solanacearum under in vitro conditions. Chave M; Crozilhac P; Deberdt P; Plouznikoff K; Declerck S Mycorrhiza; 2017 Oct; 27(7):719-723. PubMed ID: 28585092 [TBL] [Abstract][Full Text] [Related]
19. Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. Zhang W; Xia K; Feng Z; Qin Y; Zhou Y; Feng G; Zhu H; Yao Q Plant Physiol Biochem; 2024 Mar; 208():108478. PubMed ID: 38430785 [TBL] [Abstract][Full Text] [Related]
20. Soil moisture--a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Deepika S; Kothamasi D Mycorrhiza; 2015 Jan; 25(1):67-75. PubMed ID: 25085217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]