BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38809833)

  • 1. Comparative proteomics analysis of biofilms and planktonic cells of Enterococcus faecalis and Staphylococcus lugdunensis with contrasting biofilm-forming ability.
    Cho JA; Jeon S; Kwon Y; Roh YJ; Lee CH; Kim SJ
    PLoS One; 2024; 19(5):e0298283. PubMed ID: 38809833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding the proteomic changes involved in the biofilm formation of Enterococcus faecalis SK460 to elucidate potential biofilm determinants.
    Suryaletha K; Narendrakumar L; John J; Radhakrishnan MP; George S; Thomas S
    BMC Microbiol; 2019 Jun; 19(1):146. PubMed ID: 31253082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The
    Gélinas M; Museau L; Milot A; Beauregard PB
    Microbiol Spectr; 2021 Dec; 9(3):e0080421. PubMed ID: 34935415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm.
    Lee K; Lee KM; Kim D; Yoon SS
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Important contribution of the novel locus comEB to extracellular DNA-dependent Staphylococcus lugdunensis biofilm formation.
    Rajendran NB; Eikmeier J; Becker K; Hussain M; Peters G; Heilmann C
    Infect Immun; 2015 Dec; 83(12):4682-92. PubMed ID: 26416910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences of protein expression in enterococcus faecalis biofilm during resistance to environmental pressures.
    Jiang W; Zhang Y; Yan J; He Z; Chen W
    Technol Health Care; 2024; 32(S1):371-383. PubMed ID: 38759062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Proteomics of Strong and Weak Biofilm Formers of
    Suriyanarayanan T; Qingsong L; Kwang LT; Mun LY; Truong T; Seneviratne CJ
    Mol Cell Proteomics; 2018 Apr; 17(4):643-654. PubMed ID: 29358339
    [No Abstract]   [Full Text] [Related]  

  • 8. Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: A proteomic approach.
    Qayyum S; Sharma D; Bisht D; Khan AU
    Biochem Biophys Res Commun; 2016 Jun; 474(4):652-659. PubMed ID: 27144316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress.
    Qayyum S; Sharma D; Bisht D; Khan AU
    Microb Pathog; 2019 Jan; 126():205-211. PubMed ID: 30423345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse outcomes of Photodynamic Antimicrobial Chemotherapy on five Enterococcus faecalis strains.
    Silva TC; Pereira AF; Buzalaf MA; Machado MA; Crielaard W; Deng DM
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):283-9. PubMed ID: 24784432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Biofilm Assays Using Enterococcus faecalis OG1RF Identify New Determinants of Biofilm Formation.
    Willett JLE; Dale JL; Kwiatkowski LM; Powers JL; Korir ML; Kohli R; Barnes AMT; Dunny GM
    mBio; 2021 Jun; 12(3):e0101121. PubMed ID: 34126766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of
    Korir ML; Dale JL; Dunny GM
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 30910809
    [No Abstract]   [Full Text] [Related]  

  • 13. Planktonic Interference and Biofilm Alliance between Aggregation Substance and Endocarditis- and Biofilm-Associated Pili in Enterococcus faecalis.
    Afonina I; Lim XN; Tan R; Kline KA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30249706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cell division protein divIVA in Enterococcus faecalis pathogenesis, biofilm and drug resistance: A future perspective by in silico approaches.
    Sharma D; Khan AU
    Microb Pathog; 2018 Dec; 125():361-365. PubMed ID: 30290265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis.
    Zheng JX; Sun X; Lin ZW; Qi GB; Tu HP; Wu Y; Jiang SB; Chen Z; Deng QW; Qu D; Yu ZJ
    J Med Microbiol; 2019 Mar; 68(3):493-502. PubMed ID: 30882300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis.
    Tendolkar PM; Baghdayan AS; Gilmore MS; Shankar N
    Infect Immun; 2004 Oct; 72(10):6032-9. PubMed ID: 15385507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomics Analysis Reveals Putative Genes Involved in Biofilm Formation and Biofilm-associated Drug Resistance of Enterococcus faecalis.
    Seneviratne CJ; Suriyanarayanan T; Swarup S; Chia KHB; Nagarajan N; Zhang C
    J Endod; 2017 Jun; 43(6):949-955. PubMed ID: 28457636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Putative surface proteins encoded within a novel transferable locus confer a high-biofilm phenotype to Enterococcus faecalis.
    Tendolkar PM; Baghdayan AS; Shankar N
    J Bacteriol; 2006 Mar; 188(6):2063-72. PubMed ID: 16513736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of Chromosomally Encoded Homologs of the RRNPP Protein Family in Enterococcus faecalis Biofilm Formation and Urinary Tract Infection Pathogenesis.
    Parthasarathy S; Jordan LD; Schwarting N; Woods MA; Abdullahi Z; Varahan S; Passos PMS; Miller B; Hancock LE
    J Bacteriol; 2020 Aug; 202(17):. PubMed ID: 32540933
    [No Abstract]   [Full Text] [Related]  

  • 20. ClpP participates in stress tolerance, biofilm formation, antimicrobial tolerance, and virulence of Enterococcus faecalis.
    Zheng J; Wu Y; Lin Z; Wang G; Jiang S; Sun X; Tu H; Yu Z; Qu D
    BMC Microbiol; 2020 Feb; 20(1):30. PubMed ID: 32033530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.