These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38809855)

  • 1. Optimal configurations for stiffness and compliance in human & robot arms.
    Woolfrey J; Ajoudani A; Lu W; Natale L
    PLoS One; 2024; 19(5):e0302987. PubMed ID: 38809855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human inspired fall arrest strategy for humanoid robots based on stiffness ellipsoid optimisation.
    Cui D; Peers C; Wang G; Chen Z; Richardson R; Zhou C
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34348251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.
    Trumbower RD; Krutky MA; Yang BS; Perreault EJ
    PLoS One; 2009; 4(5):e5411. PubMed ID: 19412540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts.
    Zhang Z; Beck A; Magnenat-Thalmann N
    IEEE Trans Cybern; 2015 Aug; 45(8):1390-400. PubMed ID: 25252290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical constraints on the feedforward regulation of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    J Neurophysiol; 2012 Oct; 108(8):2083-91. PubMed ID: 22832565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of geometry and joint stiffness to mechanical stability of the human arm.
    Milner TE
    Exp Brain Res; 2002 Apr; 143(4):515-9. PubMed ID: 11914798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance control reduces instability that arises from motor noise.
    Selen LP; Franklin DW; Wolpert DM
    J Neurosci; 2009 Oct; 29(40):12606-16. PubMed ID: 19812335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation.
    Mick S; Badets A; Oudeyer PY; Cattaert D; De Rugy A
    Hum Factors; 2022 Mar; 64(2):372-384. PubMed ID: 32809867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel robotic platform with controllable stiffness manipulation arms for laparoendoscopic single-site surgery (LESS).
    Wang J; Wang S; Li J; Ren X; Briggs RM
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28782245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer and durability of acquired patterns of human arm stiffness.
    Darainy M; Malfait N; Towhidkhah F; Ostry DJ
    Exp Brain Res; 2006 Apr; 170(2):227-37. PubMed ID: 16328279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unintentional changes in the apparent stiffness of the multi-joint limb.
    Zhou T; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2015 Oct; 233(10):2989-3004. PubMed ID: 26169103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multijoint arm stiffness during movements following stroke: implications for robot therapy.
    Piovesan D; Casadio M; Mussa-Ivaldi FA; Morasso PG
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975372. PubMed ID: 22275576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the Human Arm Stiffness Estimation Method Developed for Overground Physical Interaction Experiments.
    Kamma TK; Regmi S; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartesian stiffness for wrist joints: analysis on the Lie group of 3D rotations and geometric approximation for experimental evaluation.
    Campolo D
    Comput Methods Biomech Biomed Engin; 2013; 16(9):975-86. PubMed ID: 22224937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of voluntary force generation on the elastic components of endpoint stiffness.
    Perreault EJ; Kirsch RF; Crago PE
    Exp Brain Res; 2001 Dec; 141(3):312-23. PubMed ID: 11715075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive control of stiffness to stabilize hand position with large loads.
    Franklin DW; Milner TE
    Exp Brain Res; 2003 Sep; 152(2):211-20. PubMed ID: 12845511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the biomechanical constraints on the feedforward control of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4498-501. PubMed ID: 21095780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing small interaction forces through proprioception.
    Rashid F; Burns D; Song YS
    Sci Rep; 2021 Nov; 11(1):21829. PubMed ID: 34750408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.