These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38809855)

  • 21. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prescribing Cartesian Stiffness of Soft Robots by Co-Optimization of Shape and Segment-Level Stiffness.
    Stella F; Hughes J; Rus D; Della Santina C
    Soft Robot; 2023 Aug; 10(4):701-712. PubMed ID: 37130308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal use of limb mechanics distributes control during bimanual tasks.
    Córdova Bulens D; Crevecoeur F; Thonnard JL; Lefèvre P
    J Neurophysiol; 2018 Mar; 119(3):921-932. PubMed ID: 29118194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A robotic manipulator for the characterization of two-dimensional dynamic stiffness using stochastic displacement perturbations.
    Acosta AM; Kirsch RF; Perreault EJ
    J Neurosci Methods; 2000 Oct; 102(2):177-86. PubMed ID: 11040414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human arm stiffness characteristics during the maintenance of posture.
    Flash T; Mussa-Ivaldi F
    Exp Brain Res; 1990; 82(2):315-26. PubMed ID: 2286234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots.
    Zhang Z; Li Z; Zhang Y; Luo Y; Li Y
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3251-62. PubMed ID: 26340789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oscillators and crank turning: exploiting natural dynamics with a humanoid robot arm.
    Williamson MM
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2207-23. PubMed ID: 14599316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of double-joint arm posture in adults with unilateral brain damage.
    Mihaltchev P; Archambault PS; Feldman AG; Levin MF
    Exp Brain Res; 2005 Jun; 163(4):468-86. PubMed ID: 15690154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated linkage-driven dexterous anthropomorphic robotic hand.
    Kim U; Jung D; Jeong H; Park J; Jung HM; Cheong J; Choi HR; Do H; Park C
    Nat Commun; 2021 Dec; 12(1):7177. PubMed ID: 34907178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating Human Wrist Stiffness during a Tooling Task.
    Phan GH; Hansen C; Tommasino P; Budhota A; Mohan DM; Hussain A; Burdet E; Campolo D
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multijoint dynamics and postural stability of the human arm.
    Perreault EJ; Kirsch RF; Crago PE
    Exp Brain Res; 2004 Aug; 157(4):507-17. PubMed ID: 15112115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Posture Control-Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses.
    Mergner T; Lippi V
    Front Neurorobot; 2018; 12():21. PubMed ID: 29867428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel Concept for Safe, Stiffness-Controllable Robot Links.
    Stilli A; Wurdemann HA; Althoefer K
    Soft Robot; 2017 Mar; 4(1):16-22. PubMed ID: 29182102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal posture control of a musculo-skeletal arm model.
    Schouten AC; de Vlugt E; van der Helm FC; Brouwn GG
    Biol Cybern; 2001 Feb; 84(2):143-52. PubMed ID: 11205351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization-Based Motion Generation for Buzzwire Tasks With the REEM-C Humanoid Robot.
    Lee PQ; Rajendran V; Mombaur K
    Front Robot AI; 2022; 9():898890. PubMed ID: 35719206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Snake-Inspired Layer-Driven Continuum Robot.
    Qin G; Ji A; Cheng Y; Zhao W; Pan H; Shi S; Song Y
    Soft Robot; 2022 Aug; 9(4):788-797. PubMed ID: 34550801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning to teleoperate an upper-limb assistive humanoid robot for bimanual daily-living tasks.
    Connan M; Sierotowicz M; Henze B; Porges O; Albu-Schäffer A; Roa MA; Castellini C
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34757953
    [No Abstract]   [Full Text] [Related]  

  • 40. Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm.
    Hu X; Murray WM; Perreault EJ
    J Neurophysiol; 2011 Apr; 105(4):1633-41. PubMed ID: 21289133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.