These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38809945)

  • 1. Inhibiting Demetalation of Fe─N─C via Mn Sites for Efficient Oxygen Reduction Reaction in Zinc-Air Batteries.
    Hu C; Xing G; Han W; Hao Y; Zhang C; Zhang Y; Kuo CH; Chen HY; Hu F; Li L; Peng S
    Adv Mater; 2024 May; ():e2405763. PubMed ID: 38809945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Synthesis of Half-Metallic Diatomic Catalysts for Efficient Oxygen Reduction Electrocatalysis.
    Yao Y; Jiang T; Lim SY; Frandsen C; Li Z; Dou Y; Wu F; Qin J; Zou J; Stamate E; Zhang W
    Small; 2023 Dec; 19(49):e2304655. PubMed ID: 37590396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulating N-Doped Carbon Hollow Nanospheres with Highly Accessible Through-Pores to Isolate Fe Single-Atoms for Efficient Oxygen Reduction.
    Liu ZH; Ma FX; Fan HS; Liu ZQ; Du Y; Zhen L; Xu CY
    Small; 2024 Feb; 20(6):e2305700. PubMed ID: 37797186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Versatile Extended Stöber Approach to Monodisperse Sub-40 nm Carbon Nanospheres for Stabilizing Atomically Dispersed Fe─N
    Lu T; Zhang S; Zhou Q; Wang R; Pang H; Yang J; Zhang M; Xu L; Xi S; Sun D; Jin C; Tang Y
    Small; 2023 Nov; 19(45):e2303329. PubMed ID: 37438567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building Atomic Scale and Dense Fe─N
    Luo Z; Zhou T; Guan Y; Zhang L; Zhang Q; He C; Sun X; Ren X
    Small; 2023 Nov; 19(48):e2304750. PubMed ID: 37537155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring Oxygen Reduction Reaction Kinetics of Fe-N-C Catalyst via Spin Manipulation for Efficient Zinc-Air Batteries.
    Zhang H; Chen HC; Feizpoor S; Li L; Zhang X; Xu X; Zhuang Z; Li Z; Hu W; Snyders R; Wang D; Wang C
    Adv Mater; 2024 Jun; 36(25):e2400523. PubMed ID: 38594481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Potential Iodide Oxidation Enables Dual-Atom CoFe─N─C Catalysts for Ultra-Stable and High-Energy-Efficiency Zn-Air Batteries.
    Fan HS; Liang X; Ma FX; Zhang G; Liu ZQ; Zhen L; Zeng XC; Xu CY
    Small; 2024 Feb; 20(8):e2307863. PubMed ID: 37822157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mn Single-Atom Tuning Fe-N-C Catalyst Enables Highly Efficient and Durable Oxygen Electrocatalysis and Zinc-Air Batteries.
    Ran L; Xu Y; Zhu X; Chen S; Qiu X
    ACS Nano; 2024 Jan; 18(1):750-760. PubMed ID: 38150590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unravelling the Role of Fe-Mn Binary Active Sites Electrocatalyst for Efficient Oxygen Reduction Reaction and Rechargeable Zn-Air Batteries.
    Sarkar S; Biswas A; Purkait T; Das M; Kamboj N; Dey RS
    Inorg Chem; 2020 Apr; 59(7):5194-5205. PubMed ID: 32191443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Asymmetry Engineering of Fe-N-C Electrocatalyst via Adjacent Carbon Vacancy for Boosting Oxygen Reduction Reaction.
    Tu H; Zhang H; Song Y; Liu P; Hou Y; Xu B; Liao T; Guo J; Sun Z
    Adv Sci (Weinh); 2023 Nov; 10(32):e2305194. PubMed ID: 37752831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt Effect Engineering Single Fe-N
    Tan X; Zhang J; Cao F; Liu Y; Yang H; Zhou Q; Li X; Wang R; Li Z; Hu H; Zhao Q; Wu M
    Adv Sci (Weinh); 2024 Mar; 11(12):e2306599. PubMed ID: 38224212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Particle-Mediated Inhibition of Demetalation for Single-Atom Catalytic Sites in Acidic Electrochemical Environments.
    Gao XB; Wang Y; Xu W; Huang H; Zhao K; Ye H; Zhou ZY; Zheng N; Sun SG
    J Am Chem Soc; 2023 Jul; 145(28):15528-15537. PubMed ID: 37429887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Fe-N
    Yang L; Zhang X; Yu L; Hou J; Zhou Z; Lv R
    Adv Mater; 2022 Feb; 34(5):e2105410. PubMed ID: 34787336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co
    Zhao H; Yao H; Wang S; Cao Y; Lu Z; Xie J; Hu J; Hao A
    J Colloid Interface Sci; 2022 Nov; 626():475-485. PubMed ID: 35803146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of an Axial Charge Transfer Channel Between Single-Atom Fe Sites and Nitrogen-Doped Carbon Supports for Boosting Oxygen Reduction.
    Cheng J; Zhang Z; Shao J; Wang T; Li R; Zhang W
    Small; 2024 May; ():e2402583. PubMed ID: 38804883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decorating Single-Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction.
    Liu H; Jiang L; Khan J; Wang X; Xiao J; Zhang H; Xie H; Li L; Wang S; Han L
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214988. PubMed ID: 36401754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Carbon-Defect Engineering to Boost Catalytic Ozonation Efficiency of Single Fe─N
    Qu W; Tang Z; Wen H; Tang S; Lian Q; Zhao H; Tian S; Shu D; He C
    Small; 2024 Mar; ():e2311879. PubMed ID: 38461527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Symbiosis of Cerium Oxide Nanophase for Enhancing the Oxygen Electrocatalysis Performance of Single-Atom Fe─N─C Catalyst with Prolonged Stability for Zinc-Air Batteries.
    Luo H; Wang J; Zhang S; Sun B; Chen Z; Ren X; Luo Z; Han X; Hu W
    Small; 2024 May; ():e2400357. PubMed ID: 38778724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Durability of Fe-N-C Single-Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media.
    Tian H; Song A; Zhang P; Sun K; Wang J; Sun B; Fan Q; Shao G; Chen C; Liu H; Li Y; Wang G
    Adv Mater; 2023 Apr; 35(14):e2210714. PubMed ID: 36630970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anchoring Fe-N-C Sites on Hierarchically Porous Carbon Sphere and CNT Interpenetrated Nanostructures as Efficient Cathodes for Zinc-Air Batteries.
    Fan F; Zhou H; Yan R; Yang C; Zhu H; Gao Y; Ma L; Cao S; Cheng C; Wang Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41609-41618. PubMed ID: 34428013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.