These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38810473)

  • 1. Comprehensive quantitative radiogenomic evaluation reveals novel radiomic subtypes with distinct immune pattern in glioma.
    Sun Y; Zhang Y; Gan J; Zhou H; Guo S; Wang X; Zhang C; Zheng W; Zhao X; Li X; Wang L; Ning S
    Comput Biol Med; 2024 Jul; 177():108636. PubMed ID: 38810473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging phenotypes from MRI for the prediction of glioma immune subtypes from RNA sequencing: A multicenter study.
    Duan J; Zhang Z; Chen Y; Zhao Y; Sun Q; Wang W; Zheng H; Liang D; Cheng J; Yan J; Li ZC
    Mol Oncol; 2023 Apr; 17(4):629-646. PubMed ID: 36688633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomic profiles in diffuse glioma reveal distinct subtypes with prognostic value.
    Lin P; Peng YT; Gao RZ; Wei Y; Li XJ; Huang SN; Fang YY; Wei ZX; Huang ZG; Yang H; Chen G
    J Cancer Res Clin Oncol; 2020 May; 146(5):1253-1262. PubMed ID: 32065261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomic profiling for insular diffuse glioma stratification with distinct biologic pathway activities.
    Duan W; Wang Z; Ma Z; Zheng H; Li Y; Pei D; Wang M; Qiu Y; Duan M; Yan D; Ji Y; Cheng J; Liu X; Zhang Z; Yan J
    Cancer Sci; 2024 Apr; 115(4):1261-1272. PubMed ID: 38279197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging-based radiomic features for extrapolating infiltration levels of immune cells in lower-grade gliomas.
    Zhang X; Liu S; Zhao X; Shi X; Li J; Guo J; Niedermann G; Luo R; Zhang X
    Strahlenther Onkol; 2020 Oct; 196(10):913-921. PubMed ID: 32025804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes.
    Foltyn-Dumitru M; Schell M; Rastogi A; Sahm F; Kessler T; Wick W; Bendszus M; Brugnara G; Vollmuth P
    Eur Radiol; 2024 Apr; 34(4):2782-2790. PubMed ID: 37672053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature.
    Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T
    Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas.
    Pei D; Guan F; Hong X; Liu Z; Wang W; Qiu Y; Duan W; Wang M; Sun C; Wang W; Wang X; Guo Y; Wang Z; Liu Z; Xing A; Guo Z; Luo L; Liu X; Cheng J; Zhang B; Zhang Z; Yan J
    Eur Radiol; 2023 May; 33(5):3455-3466. PubMed ID: 36853347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting.
    Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas.
    Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W
    Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models.
    Jiang C; Sun C; Wang X; Ma S; Jia W; Zhang D
    J Imaging Inform Med; 2024 Aug; 37(4):1359-1374. PubMed ID: 38381384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiogenomics of lower-grade gliomas: a radiomic signature as a biological surrogate for survival prediction.
    Qian Z; Li Y; Sun Z; Fan X; Xu K; Wang K; Li S; Zhang Z; Jiang T; Liu X; Wang Y
    Aging (Albany NY); 2018 Oct; 10(10):2884-2899. PubMed ID: 30362964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiogenomics correlation between MR imaging features and mRNA-based subtypes in lower-grade glioma.
    Liu Z; Zhang J
    BMC Neurol; 2020 Jun; 20(1):259. PubMed ID: 32600353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning.
    Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A
    Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiogenomics to characterize the immune-related prognostic signature associated with biological functions in glioblastoma.
    Liu D; Chen J; Ge H; Yan Z; Luo B; Hu X; Yang K; Liu Y; Liu H; Zhang W
    Eur Radiol; 2023 Jan; 33(1):209-220. PubMed ID: 35881182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiogenomic analysis of vascular endothelial growth factor in patients with diffuse gliomas.
    Sun Z; Li Y; Wang Y; Fan X; Xu K; Wang K; Li S; Zhang Z; Jiang T; Liu X
    Cancer Imaging; 2019 Oct; 19(1):68. PubMed ID: 31639060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y
    Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.
    Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS
    World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas.
    Niu L; Feng WH; Duan CF; Liu YC; Liu JH; Liu XJ
    Biomed Res Int; 2020; 2020():4630218. PubMed ID: 33163535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.