These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38810478)
1. Automatic segmentation of femoral tumors by nnU-net. Rachmil O; Artzi M; Iluz M; Druckmann I; Yosibash Z; Sternheim A Clin Biomech (Bristol); 2024 Jun; 116():106265. PubMed ID: 38810478 [TBL] [Abstract][Full Text] [Related]
2. The influence of femoral lytic tumors segmentation on autonomous finite element analysis. Rachmil O; Myers K; Merose O; Sternheim A; Yosibash Z Clin Biomech (Bristol); 2024 Feb; 112():106192. PubMed ID: 38330735 [TBL] [Abstract][Full Text] [Related]
3. The effect of deep learning-based lesion segmentation on failure load calculations of metastatic femurs using finite element analysis. Ataei A; Eggermont F; Verdonschot N; Lessmann N; Tanck E Bone; 2024 Feb; 179():116987. PubMed ID: 38061504 [TBL] [Abstract][Full Text] [Related]
4. Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework. Dot G; Schouman T; Dubois G; Rouch P; Gajny L Eur Radiol; 2022 Jun; 32(6):3639-3648. PubMed ID: 35037088 [TBL] [Abstract][Full Text] [Related]
5. Automatic segmentation of organs at risk and tumors in CT images of lung cancer from partially labelled datasets with a semi-supervised conditional nnU-Net. Zhang G; Yang Z; Huo B; Chai S; Jiang S Comput Methods Programs Biomed; 2021 Nov; 211():106419. PubMed ID: 34563895 [TBL] [Abstract][Full Text] [Related]
6. Finite element models with automatic computed tomography bone segmentation for failure load computation. Saillard E; Gardegaront M; Levillain A; Bermond F; Mitton D; Pialat JB; Confavreux C; Grenier T; Follet H Sci Rep; 2024 Jul; 14(1):16576. PubMed ID: 39019937 [TBL] [Abstract][Full Text] [Related]
7. BOA: A CT-Based Body and Organ Analysis for Radiologists at the Point of Care. Haubold J; Baldini G; Parmar V; Schaarschmidt BM; Koitka S; Kroll L; van Landeghem N; Umutlu L; Forsting M; Nensa F; Hosch R Invest Radiol; 2024 Jun; 59(6):433-441. PubMed ID: 37994150 [TBL] [Abstract][Full Text] [Related]
8. nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer. Yang E; Kim JH; Min JH; Jeong WK; Hwang JA; Lee JH; Shin J; Kim H; Lee SE; Baek SY Acad Radiol; 2024 Jul; 31(7):2784-2794. PubMed ID: 38350812 [TBL] [Abstract][Full Text] [Related]
9. A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Chen X; Sun S; Bai N; Han K; Liu Q; Yao S; Tang H; Zhang C; Lu Z; Huang Q; Zhao G; Xu Y; Chen T; Xie X; Liu Y Radiother Oncol; 2021 Jul; 160():175-184. PubMed ID: 33961914 [TBL] [Abstract][Full Text] [Related]
10. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
11. Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy. Rodríguez Outeiral R; González PJ; Schaake EE; van der Heide UA; Simões R Radiat Oncol; 2023 May; 18(1):91. PubMed ID: 37248490 [TBL] [Abstract][Full Text] [Related]
12. Automatic Segmentation of Type A Aortic Dissection on Computed Tomography Images Using Deep Learning Approach. Guo X; Liu T; Yang Y; Dai J; Wang L; Tang D; Sun H Diagnostics (Basel); 2024 Jun; 14(13):. PubMed ID: 39001223 [TBL] [Abstract][Full Text] [Related]
13. Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images. Heutink F; Koch V; Verbist B; van der Woude WJ; Mylanus E; Huinck W; Sechopoulos I; Caballo M Comput Methods Programs Biomed; 2020 Jul; 191():105387. PubMed ID: 32109685 [TBL] [Abstract][Full Text] [Related]
14. An automated two-stage approach to kidney and tumor segmentation in CT imaging. Yao N; Hu H; Han C; Nan J; Li Y; Zhu F Technol Health Care; 2024; 32(5):3279-3292. PubMed ID: 38875055 [TBL] [Abstract][Full Text] [Related]
15. Fully automatic segmentation of femurs with medullary canal definition in high and in low resolution CT scans. Almeida DF; Ruben RB; Folgado J; Fernandes PR; Audenaert E; Verhegghe B; De Beule M Med Eng Phys; 2016 Dec; 38(12):1474-1480. PubMed ID: 27751655 [TBL] [Abstract][Full Text] [Related]
16. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. Jin L; Yang J; Kuang K; Ni B; Gao Y; Sun Y; Gao P; Ma W; Tan M; Kang H; Chen J; Li M EBioMedicine; 2020 Dec; 62():103106. PubMed ID: 33186809 [TBL] [Abstract][Full Text] [Related]
17. [Study on the accuracy of automatic segmentation of knee CT images based on deep learning]. Song P; Fan Z; Zhi X; Cao Z; Min S; Liu X; Zhang Y; Kong X; Chai W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 May; 36(5):534-539. PubMed ID: 35570625 [TBL] [Abstract][Full Text] [Related]
18. 3D PET/CT tumor segmentation based on nnU-Net with GCN refinement. Xue H; Fang Q; Yao Y; Teng Y Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37549672 [No Abstract] [Full Text] [Related]
19. Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images. Liu H; Zhou Y; Gou S; Luo Z Comput Biol Med; 2024 May; 174():108420. PubMed ID: 38613896 [TBL] [Abstract][Full Text] [Related]
20. Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Huo L; Hu X; Xiao Q; Gu Y; Chu X; Jiang L Magn Reson Imaging; 2021 Oct; 82():31-41. PubMed ID: 34147598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]