BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38810483)

  • 1. Efficient conversion of hemoglobin to a non-vasoactive oxygen carrier by site-specific cross-linking with azido acyl methyl phosphates followed by bio-orthogonal CuAAC with a bis-alkyne.
    Kim Y; Huang LL; Wu N; Kluger R
    Bioorg Chem; 2024 Aug; 149():107464. PubMed ID: 38810483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit-directed click coupling via doubly cross-linked hemoglobin efficiently produces readily purified functional bis-tetrameric oxygen carriers.
    Singh S; Dubinsky-Davidchik IS; Yang Y; Kluger R
    Org Biomol Chem; 2015 Dec; 13(45):11118-28. PubMed ID: 26400017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient formation of hemoglobin bis-tetramers
    Kim Y; Kluger R
    Org Biomol Chem; 2022 Oct; 20(41):8083-8091. PubMed ID: 36205177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemoglobin bis-tetramers via cooperative azide-alkyne coupling.
    Foot JS; Lui FE; Kluger R
    Chem Commun (Camb); 2009 Dec; (47):7315-7. PubMed ID: 20024213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing efficiency in protein-protein coupling: subunit-directed acetylation and phase-directed CuAAC ("click coupling") in the formation of hemoglobin bis-tetramers.
    Wang A; Kluger R
    Biochemistry; 2014 Nov; 53(43):6793-9. PubMed ID: 25325574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient CuAAC click formation of functional hemoglobin bis-tetramers.
    Yang Y; Kluger R
    Chem Commun (Camb); 2010 Oct; 46(40):7557-9. PubMed ID: 20852763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-promoted azide-alkyne cycloaddition for protein-protein coupling in the formation of a bis-hemoglobin as a copper-free oxygen carrier.
    Singh S; Dubinsky-Davidchik IS; Kluger R
    Org Biomol Chem; 2016 Oct; 14(42):10011-10017. PubMed ID: 27714247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-linking hemoglobin by design: lessons from using molecular clamps.
    Kluger R; Jones RT; Shih DT
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):415-28. PubMed ID: 7994365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of human hemoglobin with methyl acyl phosphates derived from dicarboxylic acids. Systematic relationships between cross-linked structure and oxygen-binding properties.
    Jones RT; Head CG; Fujita TS; Shih DT; Wodzinska J; Kluger R
    Biochemistry; 1993 Jan; 32(1):215-23. PubMed ID: 8418841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-linked bis-hemoglobins: connections and oxygen binding.
    Gourianov N; Kluger R
    J Am Chem Soc; 2003 Sep; 125(36):10885-92. PubMed ID: 12952468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of (1,2,3-triazol-4-yl)methyl Phosphinates and (1,2,3-Triazol-4-yl)methyl Phosphates by Copper-Catalyzed Azide-Alkyne Cycloaddition.
    Tripolszky A; Németh K; Szabó PT; Bálint E
    Molecules; 2019 May; 24(11):. PubMed ID: 31159301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjoined hemoglobins. Loss of cooperativity and protein-protein interactions.
    Gourianov N; Kluger R
    Biochemistry; 2005 Nov; 44(45):14989-99. PubMed ID: 16274245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-linked hemoglobin bis-tetramers from bioorthogonal coupling do not induce vasoconstriction in the circulation.
    Wang A; Singh S; Yu B; Bloch DB; Zapol WM; Kluger R
    Transfusion; 2019 Jan; 59(1):359-370. PubMed ID: 30444016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, Modeling and Synthesis of 1,2,3-Triazole-Linked Nucleoside-Amino Acid Conjugates as Potential Antibacterial Agents.
    Malkowski SN; Dishuck CF; Lamanilao GG; Embry CP; Grubb CS; Cafiero M; Peterson LW
    Molecules; 2017 Oct; 22(10):. PubMed ID: 28994722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional cross-linked hemoglobin bis-tetramers: geometry and cooperativity.
    Hu D; Kluger R
    Biochemistry; 2008 Nov; 47(47):12551-61. PubMed ID: 18956893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient chemical introduction of a disulfide cross-link and conjugation site into human hemoglobin at beta-lysine-82 utilizing a bifunctional aminoacyl phosphate.
    Kluger R; Li X
    Bioconjug Chem; 1997; 8(6):921-6. PubMed ID: 9404667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient generation of dendritic arrays of cross-linked hemoglobin: symmetry and redundancy.
    Hu D; Kluger R
    Org Biomol Chem; 2008 Jan; 6(1):151-6. PubMed ID: 18075660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel site-directed affinity reagent for cross-linking human hemoglobin: bis[2-(4-phosphonooxyphenoxy)carbonylethyl]phosphinic acid.
    Roach TA; Macdonald VW; Hosmane RS
    J Med Chem; 2004 Nov; 47(24):5847-59. PubMed ID: 15537342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioorthogonal phase-directed copper-catalyzed azide-alkyne cycloaddition (PDCuAAC) coupling of selectively cross-linked superoxide dismutase dimers produces a fully active bis-dimer.
    Siren EM; Singh S; Kluger R
    Org Biomol Chem; 2015 Oct; 13(40):10244-9. PubMed ID: 26308144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface functionalization of exosomes using click chemistry.
    Smyth T; Petrova K; Payton NM; Persaud I; Redzic JS; Graner MW; Smith-Jones P; Anchordoquy TJ
    Bioconjug Chem; 2014 Oct; 25(10):1777-84. PubMed ID: 25220352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.