These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38810635)
1. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour Souza A; Kevin M; Rodriguez BJ; Reynaud EG Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38810635 [TBL] [Abstract][Full Text] [Related]
2. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
3. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Jiang T; Munguia-Lopez JG; Gu K; Bavoux MM; Flores-Torres S; Kort-Mascort J; Grant J; Vijayakumar S; De Leon-Rodriguez A; Ehrlicher AJ; Kinsella JM Biofabrication; 2019 Dec; 12(1):015024. PubMed ID: 31404917 [TBL] [Abstract][Full Text] [Related]
4. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
5. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
7. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
8. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
9. Alginate/Gelatin-Based Hydrogel with Soy Protein/Peptide Powder for 3D Printing Tissue-Engineering Scaffolds to Promote Angiogenesis. Liu Y; Hu Q; Dong W; Liu S; Zhang H; Gu Y Macromol Biosci; 2022 Apr; 22(4):e2100413. PubMed ID: 35043585 [TBL] [Abstract][Full Text] [Related]
10. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
11. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
12. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
13. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157 [TBL] [Abstract][Full Text] [Related]
14. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
15. Biofabrication of three-dimensional cellular structures based on gelatin methacrylate-alginate interpenetrating network hydrogel. Krishnamoorthy S; Zhang Z; Xu C J Biomater Appl; 2019 Mar; 33(8):1105-1117. PubMed ID: 30636494 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related]
17. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
18. A 3D-printable gelatin/alginate/ε-poly-l-lysine hydrogel scaffold to enable porcine muscle stem cells expansion and differentiation for cultured meat development. Wang X; Wang M; Xu Y; Yin J; Hu J Int J Biol Macromol; 2024 Jun; 271(Pt 1):131980. PubMed ID: 38821790 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related]
20. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]