These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38811244)

  • 1. Trans-crop applications of atypical R genes for multipathogen resistance.
    Sun P; Han X; Milne RJ; Li G
    Trends Plant Sci; 2024 Oct; 29(10):1103-1112. PubMed ID: 38811244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pivoting the plant immune system from dissection to deployment.
    Dangl JL; Horvath DM; Staskawicz BJ
    Science; 2013 Aug; 341(6147):746-51. PubMed ID: 23950531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unconventional R proteins in the botanical tribe Triticeae.
    Athiyannan N; Aouini L; Wang Y; Krattinger SG
    Essays Biochem; 2022 Sep; 66(5):561-569. PubMed ID: 35670039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops.
    Deng Y; Ning Y; Yang DL; Zhai K; Wang GL; He Z
    Mol Plant; 2020 Oct; 13(10):1402-1419. PubMed ID: 32979566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of microRNAs in NBS-LRR gene expression and its implications for plant immunity and crop development.
    Rodrigues JCM; Carrijo J; Anjos RM; Cunha NB; Grynberg P; Aragão FJL; Vianna GR
    Transgenic Res; 2024 Aug; 33(4):159-174. PubMed ID: 38856866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving immunity in crops: new tactics in an old game.
    Wulff BB; Horvath DM; Ward ER
    Curr Opin Plant Biol; 2011 Aug; 14(4):468-76. PubMed ID: 21531167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances of NLR receptors in vegetable disease resistance.
    Wen Q; Wang S; Zhang X; Zhou Z
    Plant Sci; 2024 Nov; 348():112224. PubMed ID: 39142606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops.
    Silva MS; Arraes FBM; Campos MA; Grossi-de-Sa M; Fernandez D; Cândido ES; Cardoso MH; Franco OL; Grossi-de-Sa MF
    Plant Sci; 2018 May; 270():72-84. PubMed ID: 29576088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular engineering of plant immune receptors for tailored crop disease resistance.
    Cadiou L; Brunisholz F; Cesari S; Kroj T
    Curr Opin Plant Biol; 2023 Aug; 74():102381. PubMed ID: 37192575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gain of function mutation in SlNRC4a enhances basal immunity resulting in broad-spectrum disease resistance.
    Pizarro L; Leibman-Markus M; Gupta R; Kovetz N; Shtein I; Bar E; Davidovich-Rikanati R; Zarivach R; Lewinsohn E; Avni A; Bar M
    Commun Biol; 2020 Jul; 3(1):404. PubMed ID: 32732974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. microRNA-mediated R gene regulation: molecular scabbards for double-edged swords.
    Deng Y; Liu M; Li X; Li F
    Sci China Life Sci; 2018 Feb; 61(2):138-147. PubMed ID: 29327329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance.
    Zhao H; Wang X; Jia Y; Minkenberg B; Wheatley M; Fan J; Jia MH; Famoso A; Edwards JD; Wamishe Y; Valent B; Wang GL; Yang Y
    Nat Commun; 2018 May; 9(1):2039. PubMed ID: 29795191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding.
    Li W; Deng Y; Ning Y; He Z; Wang GL
    Annu Rev Plant Biol; 2020 Apr; 71():575-603. PubMed ID: 32197052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing for plant disease resistance: applications and perspectives.
    Yin K; Qiu JL
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180322. PubMed ID: 30967029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balancing Immunity and Yield in Crop Plants.
    Ning Y; Liu W; Wang GL
    Trends Plant Sci; 2017 Dec; 22(12):1069-1079. PubMed ID: 29037452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of recent technological advances to future resistance breeding.
    Sánchez-Martín J; Keller B
    Theor Appl Genet; 2019 Mar; 132(3):713-732. PubMed ID: 30756126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases.
    Periyannan S
    New Phytol; 2018 Jul; 219(1):45-51. PubMed ID: 29205390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance (R) Genes: Applications and Prospects for Plant Biotechnology and Breeding.
    Pandolfi V; Neto JRCF; da Silva MD; Amorim LLB; Wanderley-Nogueira AC; de Oliveira Silva RL; Kido EA; Crovella S; Iseppon AMB
    Curr Protein Pept Sci; 2017; 18(4):323-334. PubMed ID: 27455971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas systems versus plant viruses: engineering plant immunity and beyond.
    Ali Z; Mahfouz MM
    Plant Physiol; 2021 Aug; 186(4):1770-1785. PubMed ID: 35237805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities.
    Grant MR; Kazan K; Manners JM
    Microb Biotechnol; 2013 May; 6(3):212-22. PubMed ID: 23279915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.