These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38811465)

  • 1. Nanoemulsions and nanocapsules as carriers for the development of intranasal mRNA vaccines.
    Borrajo ML; Lou G; Anthiya S; Lapuhs P; Álvarez DM; Tobío A; Loza MI; Vidal A; Alonso MJ
    Drug Deliv Transl Res; 2024 Aug; 14(8):2046-2061. PubMed ID: 38811465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intranasal administration of unadjuvanted SARS-CoV-2 spike antigen boosts antigen-specific immune responses induced by parenteral protein subunit vaccine prime in mice and hamsters.
    Agbayani G; Akache B; Renner TM; Tran A; Stuible M; Dudani R; Harrison BA; Duque D; Bavananthasivam J; Deschatelets L; Hemraz UD; Régnier S; Durocher Y; McCluskie MJ
    Eur J Immunol; 2024 Jun; 54(6):e2350620. PubMed ID: 38561974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term stability and immunogenicity of lipid nanoparticle COVID-19 mRNA vaccine is affected by particle size.
    Shi R; Liu X; Wang Y; Pan M; Wang S; Shi L; Ni B
    Hum Vaccin Immunother; 2024 Dec; 20(1):2342592. PubMed ID: 38714327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Intranasal OMV-Based Vaccine Induces High Mucosal and Systemic Protecting Immunity Against a SARS-CoV-2 Infection.
    van der Ley PA; Zariri A; van Riet E; Oosterhoff D; Kruiswijk CP
    Front Immunol; 2021; 12():781280. PubMed ID: 34987509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intranasal immunization with the bivalent SARS-CoV-2 vaccine effectively protects mice from nasal infection and completely inhibits disease development.
    Jearanaiwitayakul T; Sunintaboon P; Kittiayuwat A; Limthongkul J; Wathanaphol J; Janhirun Y; Lerdsamran H; Wiriyarat W; Ubol S
    Vaccine; 2024 Jun; 42(17):3664-3673. PubMed ID: 38714446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of SARS-CoV-2 hFc-Conjugated Receptor-Binding Domain mRNA Vaccine Delivered
    Elia U; Ramishetti S; Rosenfeld R; Dammes N; Bar-Haim E; Naidu GS; Makdasi E; Yahalom-Ronen Y; Tamir H; Paran N; Cohen O; Peer D
    ACS Nano; 2021 Jun; 15(6):9627-9637. PubMed ID: 33480671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nasal Administration of Cationic Nanoemulsions as Nucleic Acids Delivery Systems Aiming at Mucopolysaccharidosis Type I Gene Therapy.
    Schuh RS; Bidone J; Poletto E; Pinheiro CV; Pasqualim G; de Carvalho TG; Farinon M; da Silva Diel D; Xavier RM; Baldo G; Matte U; Teixeira HF
    Pharm Res; 2018 Sep; 35(11):221. PubMed ID: 30259180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Possible Role of Sex As an Important Factor in Development and Administration of Lipid Nanomedicine-Based COVID-19 Vaccine.
    Vulpis E; Giulimondi F; Digiacomo L; Zingoni A; Safavi-Sohi R; Sharifi S; Caracciolo G; Mahmoudi M
    Mol Pharm; 2021 Jun; 18(6):2448-2453. PubMed ID: 33983745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMART-lipid nanoparticles enabled mRNA vaccine elicits cross-reactive humoral responses against the omicron sub-variants.
    Mahalingam G; Rachamalla HK; Arjunan P; Karuppusamy KV; Periyasami Y; Mohan A; Subramaniyam K; M S; Rajendran V; Moorthy M; Varghese GM; Mohankumar KM; Thangavel S; Srivastava A; Marepally S
    Mol Ther; 2024 May; 32(5):1284-1297. PubMed ID: 38414245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evaluation of novel oral vaccines based on self-amplifying RNA lipid nanparticles (saRNA LNPs), saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum to neutralize SARS-CoV-2 variants alpha and delta.
    Keikha R; Hashemi-Shahri SM; Jebali A
    Sci Rep; 2021 Oct; 11(1):21308. PubMed ID: 34716391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Lipid Nanoformulations for Effective mRNA Delivery.
    Chen H; Ren X; Xu S; Zhang D; Han T
    Int J Nanomedicine; 2022; 17():2893-2905. PubMed ID: 35814615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutralizing-antibody-independent SARS-CoV-2 control correlated with intranasal-vaccine-induced CD8
    Ishii H; Nomura T; Yamamoto H; Nishizawa M; Thu Hau TT; Harada S; Seki S; Nakamura-Hoshi M; Okazaki M; Daigen S; Kawana-Tachikawa A; Nagata N; Iwata-Yoshikawa N; Shiwa N; Suzuki T; Park ES; Ken M; Onodera T; Takahashi Y; Kusano K; Shimazaki R; Suzaki Y; Ami Y; Matano T
    Cell Rep Med; 2022 Feb; 3(2):100520. PubMed ID: 35233545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intranasal inoculation of an MVA-based vaccine induces IgA and protects the respiratory tract of hACE2 mice from SARS-CoV-2 infection.
    Americo JL; Cotter CA; Earl PL; Liu R; Moss B
    Proc Natl Acad Sci U S A; 2022 Jun; 119(24):e2202069119. PubMed ID: 35679343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nasal vaccination with pneumococcal surface protein A in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice.
    Tada R; Suzuki H; Takahashi S; Negishi Y; Kiyono H; Kunisawa J; Aramaki Y
    Int Immunopharmacol; 2018 Aug; 61():385-393. PubMed ID: 29945026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intranasal Delivery of MVA Vector Vaccine Induces Effective Pulmonary Immunity Against SARS-CoV-2 in Rodents.
    Bošnjak B; Odak I; Barros-Martins J; Sandrock I; Hammerschmidt SI; Permanyer M; Patzer GE; Greorgiev H; Gutierrez Jauregui R; Tscherne A; Schwarz JH; Kalodimou G; Ssebyatika G; Ciurkiewicz M; Willenzon S; Bubke A; Ristenpart J; Ritter C; Tuchel T; Meyer Zu Natrup C; Shin DL; Clever S; Limpinsel L; Baumgärtner W; Krey T; Volz A; Sutter G; Förster R
    Front Immunol; 2021; 12():772240. PubMed ID: 34858430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA.
    Blakney AK; McKay PF; Yus BI; Aldon Y; Shattock RJ
    Gene Ther; 2019 Sep; 26(9):363-372. PubMed ID: 31300730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nasal prevention of SARS-CoV-2 infection by intranasal influenza-based boost vaccination in mouse models.
    Zhou R; Wang P; Wong YC; Xu H; Lau SY; Liu L; Mok BW; Peng Q; Liu N; Woo KF; Deng S; Tam RC; Huang H; Zhang AJ; Zhou D; Zhou B; Chan CY; Du Z; Yang D; Au KK; Yuen KY; Chen H; Chen Z
    EBioMedicine; 2022 Jan; 75():103762. PubMed ID: 34942445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toll-like Receptor-4 (TLR4) Agonist-Based Intranasal Nanovaccine Delivery System for Inducing Systemic and Mucosal Immunity.
    Bakkari MA; Valiveti CK; Kaushik RS; Tummala H
    Mol Pharm; 2021 Jun; 18(6):2233-2241. PubMed ID: 34010002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for Improved pDNA Loading and Protection Using Cationic and Neutral LNPs with Industrial Scalability Potential Using Microfluidic Technology.
    Ottonelli I; Adani E; Bighinati A; Cuoghi S; Tosi G; Vandelli MA; Ruozi B; Marigo V; Duskey JT
    Int J Nanomedicine; 2024; 19():4235-4251. PubMed ID: 38766661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-lipid nanoparticles (CS-LNPs): Application to siRNA delivery.
    Tezgel Ö; Szarpak-Jankowska A; Arnould A; Auzély-Velty R; Texier I
    J Colloid Interface Sci; 2018 Jan; 510():45-56. PubMed ID: 28934610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.