These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38811518)

  • 21. Detection of cardiovascular disease cases using advanced tree-based machine learning algorithms.
    Asadi F; Homayounfar R; Mehrali Y; Masci C; Talebi S; Zayeri F
    Sci Rep; 2024 Sep; 14(1):22230. PubMed ID: 39333550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient computation of high-dimensional penalized generalized linear mixed models by latent factor modeling of the random effects.
    Heiling HM; Rashid NU; Li Q; Peng XL; Yeh JJ; Ibrahim JG
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38497825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Meta-analysis of binary outcomes via generalized linear mixed models: a simulation study.
    Bakbergenuly I; Kulinskaya E
    BMC Med Res Methodol; 2018 Jul; 18(1):70. PubMed ID: 29973146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data.
    Speiser JL
    J Biomed Inform; 2021 May; 117():103763. PubMed ID: 33781921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selecting a linear mixed model for longitudinal data: repeated measures analysis of variance, covariance pattern model, and growth curve approaches.
    Liu S; Rovine MJ; Molenaar PC
    Psychol Methods; 2012 Mar; 17(1):15-30. PubMed ID: 22251268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting the multi-domain progression of Parkinson's disease: a Bayesian multivariate generalized linear mixed-effect model.
    Wang M; Li Z; Lee EY; Lewis MM; Zhang L; Sterling NW; Wagner D; Eslinger P; Du G; Huang X
    BMC Med Res Methodol; 2017 Sep; 17(1):147. PubMed ID: 28946857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data.
    Cho SJ; Brown-Schmidt S; Lee WY
    Psychometrika; 2018 Sep; 83(3):751-771. PubMed ID: 29417454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A discrete time-to-event model for the meta-analysis of full ROC curves.
    Stoye FV; Tschammler C; Kuss O; Hoyer A
    Res Synth Methods; 2024 Nov; 15(6):1031-1048. PubMed ID: 39238449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Examination of a Functional Mixed-Effects Modeling Approach to the Analysis of Longitudinal Data.
    Fine KL; Suk HW; Grimm KJ
    Multivariate Behav Res; 2019; 54(4):475-491. PubMed ID: 30896253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A privacy-preserving and computation-efficient federated algorithm for generalized linear mixed models to analyze correlated electronic health records data.
    Yan Z; Zachrison KS; Schwamm LH; Estrada JJ; Duan R
    PLoS One; 2023; 18(1):e0280192. PubMed ID: 36649349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of an outcome using trajectories estimated from a linear mixed model.
    Maruyama N; Takahashi F; Takeuchi M
    J Biopharm Stat; 2009 Sep; 19(5):779-90. PubMed ID: 20183443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling Intensive Polytomous Time-Series Eye-Tracking Data: A Dynamic Tree-Based Item Response Model.
    Cho SJ; Brown-Schmidt S; Boeck P; Shen J
    Psychometrika; 2020 Mar; 85(1):154-184. PubMed ID: 32086751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On estimation and prediction for spatial generalized linear mixed models.
    Zhang H
    Biometrics; 2002 Mar; 58(1):129-36. PubMed ID: 11890307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An introduction to latent growth curve modelling for longitudinal continuous data in dental research.
    Tu YK; D'Aiuto F; Baelum V; Gilthorpe MS
    Eur J Oral Sci; 2009 Aug; 117(4):343-50. PubMed ID: 19627343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Marginally specified generalized linear mixed models: a robust approach.
    Mills JE; Field CA; Dupuis DJ
    Biometrics; 2002 Dec; 58(4):727-34. PubMed ID: 12495126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Risk prediction in multicentre studies when there is confounding by cluster or informative cluster size.
    Pavlou M; Ambler G; Omar RZ
    BMC Med Res Methodol; 2021 Jul; 21(1):135. PubMed ID: 34218793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixed effect machine learning: A framework for predicting longitudinal change in hemoglobin A1c.
    Ngufor C; Van Houten H; Caffo BS; Shah ND; McCoy RG
    J Biomed Inform; 2019 Jan; 89():56-67. PubMed ID: 30189255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theory-guided exploration with structural equation model forests.
    Brandmaier AM; Prindle JJ; McArdle JJ; Lindenberger U
    Psychol Methods; 2016 Dec; 21(4):566-582. PubMed ID: 27918182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Permutation-based variance component test in generalized linear mixed model with application to multilocus genetic association study.
    Zeng P; Zhao Y; Li H; Wang T; Chen F
    BMC Med Res Methodol; 2015 Apr; 15():37. PubMed ID: 25897803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extension of Nakagawa & Schielzeth's
    Johnson PC
    Methods Ecol Evol; 2014 Sep; 5(9):944-946. PubMed ID: 25810896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.