BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38811556)

  • 21. Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline.
    Weitzel AJ; Grunwald HA; Weber C; Levina R; Gantz VM; Hedrick SM; Bier E; Cooper KL
    PLoS Biol; 2021 Dec; 19(12):e3001478. PubMed ID: 34941868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Split versions of Cleave and Rescue selfish genetic elements for measured self limiting gene drive.
    Oberhofer G; Ivy T; Hay BA
    PLoS Genet; 2021 Feb; 17(2):e1009385. PubMed ID: 33600432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide RNAs.
    Oberhofer G; Ivy T; Hay BA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9343-E9352. PubMed ID: 30224454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic Evaluation of Drosophila CRISPR Tools Reveals Safe and Robust Alternatives to Autonomous Gene Drives in Basic Research.
    Port F; Muschalik N; Bullock SL
    G3 (Bethesda); 2015 May; 5(7):1493-502. PubMed ID: 25999583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient allelic-drive in Drosophila.
    Guichard A; Haque T; Bobik M; Xu XS; Klanseck C; Kushwah RBS; Berni M; Kaduskar B; Gantz VM; Bier E
    Nat Commun; 2019 Apr; 10(1):1640. PubMed ID: 30967548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progress Toward Zygotic and Germline Gene Drives in Mice.
    Pfitzner C; White MA; Piltz SG; Scherer M; Adikusuma F; Hughes JN; Thomas PQ
    CRISPR J; 2020 Oct; 3(5):388-397. PubMed ID: 33095043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene drives gaining speed.
    Bier E
    Nat Rev Genet; 2022 Jan; 23(1):5-22. PubMed ID: 34363067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inherently confinable split-drive systems in Drosophila.
    Terradas G; Buchman AB; Bennett JB; Shriner I; Marshall JM; Akbari OS; Bier E
    Nat Commun; 2021 Mar; 12(1):1480. PubMed ID: 33674604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A toxin-antidote CRISPR gene drive system for regional population modification.
    Champer J; Lee E; Yang E; Liu C; Clark AG; Messer PW
    Nat Commun; 2020 Feb; 11(1):1082. PubMed ID: 32109227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila.
    Gratz SJ; Ukken FP; Rubinstein CD; Thiede G; Donohue LK; Cummings AM; O'Connor-Giles KM
    Genetics; 2014 Apr; 196(4):961-71. PubMed ID: 24478335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes.
    Feng X; López Del Amo V; Mameli E; Lee M; Bishop AL; Perrimon N; Gantz VM
    Nat Commun; 2021 May; 12(1):2960. PubMed ID: 34017003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental demonstration of tethered gene drive systems for confined population modification or suppression.
    Metzloff M; Yang E; Dhole S; Clark AG; Messer PW; Champer J
    BMC Biol; 2022 May; 20(1):119. PubMed ID: 35606745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.
    Ren X; Sun J; Housden BE; Hu Y; Roesel C; Lin S; Liu LP; Yang Z; Mao D; Sun L; Wu Q; Ji JY; Xi J; Mohr SE; Xu J; Perrimon N; Ni JQ
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):19012-7. PubMed ID: 24191015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Efficient Temperature Inducible CRISPR-Cas9 Gene Targeting in
    Yan Y; Kobayashi Y; Huang C; Liu B; Qian W; Wan F; Schetelig MF
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes.
    Meccariello A; Monti SM; Romanelli A; Colonna R; Primo P; Inghilterra MG; Del Corsano G; Ramaglia A; Iazzetti G; Chiarore A; Patti F; Heinze SD; Salvemini M; Lindsay H; Chiavacci E; Burger A; Robinson MD; Mosimann C; Bopp D; Saccone G
    Sci Rep; 2017 Aug; 7(1):10061. PubMed ID: 28855635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives.
    Xu XS; Bulger EA; Gantz VM; Klanseck C; Heimler SR; Auradkar A; Bennett JB; Miller LA; Leahy S; Juste SS; Buchman A; Akbari OS; Marshall JM; Bier E
    Mol Cell; 2020 Oct; 80(2):246-262.e4. PubMed ID: 32949493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The haplolethal gene wupA of Drosophila exhibits potential as a target for an X-poisoning gene drive.
    Lawler CD; Nuñez AKP; Hernandes N; Bhide S; Lohrey I; Baxter S; Robin C
    G3 (Bethesda); 2024 Apr; 14(4):. PubMed ID: 38306583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila.
    Kondo S; Ueda R
    Genetics; 2013 Nov; 195(3):715-21. PubMed ID: 24002648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.