BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38811747)

  • 1. Unveiling gene regulatory networks during cellular state transitions without linkage across time points.
    Wan R; Zhang Y; Peng Y; Tian F; Gao G; Tang F; Jia J; Ge H
    Sci Rep; 2024 May; 14(1):12355. PubMed ID: 38811747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data.
    Kim J; T Jakobsen S; Natarajan KN; Won KJ
    Nucleic Acids Res; 2021 Jan; 49(1):e1. PubMed ID: 33170214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of building gene regulatory networks with sparse autoregressive models.
    Rajapakse JC; Mundra PA
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S17. PubMed ID: 22373004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of Algorithms Reconstructing Gene Regulatory Network with Resampling and Conditional Mutual Information].
    Liu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):985-90. PubMed ID: 29714955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles.
    Papili Gao N; Ud-Dean SMM; Gandrillon O; Gunawan R
    Bioinformatics; 2018 Jan; 34(2):258-266. PubMed ID: 28968704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Liu L; Liu J
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference of Gene Regulatory Network Based on Local Bayesian Networks.
    Liu F; Zhang SW; Guo WF; Wei ZG; Chen L
    PLoS Comput Biol; 2016 Aug; 12(8):e1005024. PubMed ID: 27479082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks.
    Malekpour SA; Alizad-Rahvar AR; Sadeghi M
    BMC Bioinformatics; 2020 Jul; 21(1):318. PubMed ID: 32690031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering.
    Specht AT; Li J
    Bioinformatics; 2017 Mar; 33(5):764-766. PubMed ID: 27993778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research.
    Iglesias-Martinez LF; Kolch W; Santra T
    Sci Rep; 2016 Nov; 6():37140. PubMed ID: 27876826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.
    Zheng X; Huang Y; Zou X
    PLoS Comput Biol; 2020 Jul; 16(7):e1007471. PubMed ID: 32716923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data.
    Xu J; Zhang A; Liu F; Zhang X
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37004161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe.
    Qiu X; Rahimzamani A; Wang L; Ren B; Mao Q; Durham T; McFaline-Figueroa JL; Saunders L; Trapnell C; Kannan S
    Cell Syst; 2020 Mar; 10(3):265-274.e11. PubMed ID: 32135093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data.
    Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y
    Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information.
    Zhang X; Zhao XM; He K; Lu L; Cao Y; Liu J; Hao JK; Liu ZP; Chen L
    Bioinformatics; 2012 Jan; 28(1):98-104. PubMed ID: 22088843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.