BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 38811748)

  • 1. Transgene removal using an in cis programmed homing endonuclease via single-strand annealing in the mosquito Aedes aegypti.
    Chae K; Contreras B; Romanowski JS; Dawson C; Myles KM; Adelman ZN
    Commun Biol; 2024 May; 7(1):660. PubMed ID: 38811748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Germline excision of transgenes in Aedes aegypti by homing endonucleases.
    Aryan A; Anderson MA; Myles KM; Adelman ZN
    Sci Rep; 2013; 3():1603. PubMed ID: 23549343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a self-eliminating transgene in the yellow fever mosquito,
    Chae K; Dawson C; Valentin C; Contreras B; Zapletal J; Myles KM; Adelman ZN
    PNAS Nexus; 2022 May; 1(2):pgac037. PubMed ID: 36713320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision in Aedes aegypti.
    Traver BE; Anderson MA; Adelman ZN
    Insect Mol Biol; 2009 Oct; 18(5):623-33. PubMed ID: 19754740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field.
    Reid WR; Olson KE; Franz AWE
    J Med Entomol; 2021 Sep; 58(5):1987-1996. PubMed ID: 33704462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-based gene editing of non-homologous end joining factors biases DNA repair pathway choice toward single-strand annealing in
    Chae K; Overcash JM; Dawson C; Valentin C; Tsujimoto H; Myles KM; Adelman ZN
    Curr Res Biotechnol; 2023; 5():. PubMed ID: 37475832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector,
    Li M; Bui M; Yang T; Bowman CS; White BJ; Akbari OS
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):E10540-E10549. PubMed ID: 29138316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive.
    Okamoto KW; Robert MA; Gould F; Lloyd AL
    PLoS Negl Trop Dis; 2014 Jul; 8(7):e2827. PubMed ID: 24992213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti.
    Zhao B; Kokoza VA; Saha TT; Wang S; Roy S; Raikhel AS
    Insect Biochem Mol Biol; 2014 Nov; 54():1-10. PubMed ID: 25152428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel synthetic 3'-untranslated regions for controlling transgene expression in transgenic
    Chae K; Valentin C; Jakes E; Myles KM; Adelman ZN
    RNA Biol; 2021 Oct; 18(sup1):223-231. PubMed ID: 34464234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for TALEN Evaluation, Use, and Mutation Detection in the Mosquito Aedes aegypti.
    Basu S; Aryan A; Haac ME; Myles KM; Adelman ZN
    Methods Mol Biol; 2016; 1338():157-77. PubMed ID: 26443221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DREaMR system to simplify combining mutations with rescue transgenes in Aedes aegypti.
    Chen J; Luo J; Gurav AS; Chen Z; Wang Y; Montell C
    Genetics; 2021 Nov; 219(3):. PubMed ID: 34740249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Aedes aegypti cis-regulatory elements that promote gene expression in olfactory receptor neurons of distantly related dipteran insects.
    Mysore K; Li P; Duman-Scheel M
    Parasit Vectors; 2018 Jul; 11(1):406. PubMed ID: 29996889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-locus assortment (MLA) for transgene dispersal and elimination in mosquito populations.
    Rasgon JL
    PLoS One; 2009 Jun; 4(6):e5833. PubMed ID: 19503813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias.
    Verkuijl SAN; Gonzalez E; Li M; Ang JXD; Kandul NP; Anderson MAE; Akbari OS; Bonsall MB; Alphey L
    Nat Commun; 2022 Nov; 13(1):7145. PubMed ID: 36414618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A knockout screen of genes expressed specifically in Ae. aegypti pupae reveals a critical role for stretchin in mosquito flight.
    Chae K; Valentin C; Dawson C; Jakes E; Myles KM; Adelman ZN
    Insect Biochem Mol Biol; 2021 May; 132():103565. PubMed ID: 33716097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm].
    Kokoza V; Ahmed A; Wimmer EA; Raikhel AS
    Insect Biochem Mol Biol; 2001 Nov; 31(12):1137-43. PubMed ID: 11583926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cre/lox-Recombinase-Mediated Cassette Exchange for Reversible Site-Specific Genomic Targeting of the Disease Vector, Aedes aegypti.
    Häcker I; Harrell Ii RA; Eichner G; Pilitt KL; O'Brochta DA; Handler AM; Schetelig MF
    Sci Rep; 2017 Mar; 7():43883. PubMed ID: 28266580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population dynamics of engineered underdominance and killer-rescue gene drives in the control of disease vectors.
    Edgington MP; Alphey LS
    PLoS Comput Biol; 2018 Mar; 14(3):e1006059. PubMed ID: 29570717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus.
    Harvey-Samuel T; Feng X; Okamoto EM; Purusothaman DK; Leftwich PT; Alphey L; Gantz VM
    Nat Commun; 2023 Nov; 14(1):7561. PubMed ID: 37985762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.