BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 38811901)

  • 1. SGLT2 inhibitor promotes mitochondrial dysfunction and ER-phagy in colorectal cancer cells.
    Anastasio C; Donisi I; Del Vecchio V; Colloca A; Mele L; Sardu C; Marfella R; Balestrieri ML; D'Onofrio N
    Cell Mol Biol Lett; 2024 May; 29(1):80. PubMed ID: 38811901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway.
    Zhou J; Zhu J; Yu SJ; Ma HL; Chen J; Ding XF; Chen G; Liang Y; Zhang Q
    Biomed Pharmacother; 2020 Dec; 132():110821. PubMed ID: 33068934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Role of Sodium-Glucose Cotransporter as a New Target for Cancer Therapy.
    Bardaweel S; Issa A
    J Pharm Pharm Sci; 2022; 25():253-265. PubMed ID: 35977549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake.
    Kaji K; Nishimura N; Seki K; Sato S; Saikawa S; Nakanishi K; Furukawa M; Kawaratani H; Kitade M; Moriya K; Namisaki T; Yoshiji H
    Int J Cancer; 2018 Apr; 142(8):1712-1722. PubMed ID: 29205334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection.
    Umino H; Hasegawa K; Minakuchi H; Muraoka H; Kawaguchi T; Kanda T; Tokuyama H; Wakino S; Itoh H
    Sci Rep; 2018 May; 8(1):6791. PubMed ID: 29717156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbations of cancer cell metabolism by the antidiabetic drug canagliflozin.
    Papadopoli D; Uchenunu O; Palia R; Chekkal N; Hulea L; Topisirovic I; Pollak M; St-Pierre J
    Neoplasia; 2021 Apr; 23(4):391-399. PubMed ID: 33784591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repurposing Brigatinib for the Treatment of Colorectal Cancer Based on Inhibition of ER-phagy.
    Zhang Z; Gao W; Zhou L; Chen Y; Qin S; Zhang L; Liu J; He Y; Lei Y; Chen HN; Han J; Zhou ZG; Nice EC; Li C; Huang C; Wei X
    Theranostics; 2019; 9(17):4878-4892. PubMed ID: 31410188
    [No Abstract]   [Full Text] [Related]  

  • 8. Purvalanol induces endoplasmic reticulum stress-mediated apoptosis and autophagy in a time-dependent manner in HCT116 colon cancer cells.
    Coker-Gürkan A; Arisan ED; Obakan P; Akalın K; Özbey U; Palavan-Unsal N
    Oncol Rep; 2015 Jun; 33(6):2761-70. PubMed ID: 25901510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.
    Zhang J; Yi M; Zha L; Chen S; Li Z; Li C; Gong M; Deng H; Chu X; Chen J; Zhang Z; Mao L; Sun S
    PLoS One; 2016; 11(1):e0147218. PubMed ID: 26784903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of allyl isothiocyanate to induce apoptosis via ER stress and the mitochondrial pathway upon ROS production in colorectal adenocarcinoma cells.
    Chiang JH; Tsai FJ; Hsu YM; Yin MC; Chiu HY; Yang JS
    Oncol Rep; 2020 Oct; 44(4):1415-1424. PubMed ID: 32700751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Canagliflozin Inhibits Glioblastoma Growth and Proliferation by Activating AMPK.
    Shoda K; Tsuji S; Nakamura S; Egashira Y; Enomoto Y; Nakayama N; Shimazawa M; Iwama T; Hara H
    Cell Mol Neurobiol; 2023 Mar; 43(2):879-892. PubMed ID: 35435536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorectal Cancer Apoptosis Induced by Dietary δ-Valerobetaine Involves PINK1/Parkin Dependent-Mitophagy and SIRT3.
    D'Onofrio N; Martino E; Mele L; Colloca A; Maione M; Cautela D; Castaldo D; Balestrieri ML
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT).
    Nakano D; Kawaguchi T; Iwamoto H; Hayakawa M; Koga H; Torimura T
    PLoS One; 2020; 15(4):e0232283. PubMed ID: 32343721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crataegus azarolus Leaves Induce Antiproliferative Activity, Cell Cycle Arrest, and Apoptosis in Human HT-29 and HCT-116 Colorectal Cancer Cells.
    Mustapha N; Pinon A; Limami Y; Simon A; Ghedira K; Hennebelle T; Chekir-Ghedira L
    J Cell Biochem; 2016 May; 117(5):1262-72. PubMed ID: 26495895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-Based Evaluation of Proximal Sodium Reabsorption Through SGLT2 in Health and Diabetes and the Effect of Inhibition With Canagliflozin.
    Brady JA; Hallow KM
    J Clin Pharmacol; 2018 Mar; 58(3):377-385. PubMed ID: 29144539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation.
    Komatsu S; Nomiyama T; Numata T; Kawanami T; Hamaguchi Y; Iwaya C; Horikawa T; Fujimura-Tanaka Y; Hamanoue N; Motonaga R; Tanabe M; Inoue R; Yanase T; Kawanami D
    Endocr J; 2020 Jan; 67(1):99-106. PubMed ID: 31776304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-21 (Mir-21) Promotes Cell Growth and Invasion by Repressing Tumor Suppressor PTEN in Colorectal Cancer.
    Wu Y; Song Y; Xiong Y; Wang X; Xu K; Han B; Bai Y; Li L; Zhang Y; Zhou L
    Cell Physiol Biochem; 2017; 43(3):945-958. PubMed ID: 28957811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIRT3-Mediated SOD2 and PGC-1α Contribute to Chemoresistance in Colorectal Cancer Cells.
    Paku M; Haraguchi N; Takeda M; Fujino S; Ogino T; Takahashi H; Miyoshi N; Uemura M; Mizushima T; Yamamoto H; Doki Y; Eguchi H
    Ann Surg Oncol; 2021 Aug; 28(8):4720-4732. PubMed ID: 33393034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of DYRK1A/B Drives Endoplasmic Reticulum Stress-mediated Autophagic Cell Death Through Metabolic Reprogramming in Colorectal Cancer Cells.
    Hwang J; Park A; Kim C; Yu D; Byun H; Ku M; Yang J; Kim TI; Jeong KS; Kim KY; Lee H; Shin SJ
    Anticancer Res; 2022 Jan; 42(1):589-598. PubMed ID: 34969768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic Effect of Sodium Glucose Co-Transporter 2 Inhibitor Dapagliflozin on Renal Cell Carcinoma.
    Kuang H; Liao L; Chen H; Kang Q; Shu X; Wang Y
    Med Sci Monit; 2017 Aug; 23():3737-3745. PubMed ID: 28763435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.