These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38812068)
1. Nano PDA@Tur-Modified Piezoelectric Sensors for Enhanced Sensitivity and Energy Harvesting. Yang R; Ma Y; Cui J; Liu M; Wu Y; Zheng H ACS Sens; 2024 Jun; 9(6):3137-3149. PubMed ID: 38812068 [TBL] [Abstract][Full Text] [Related]
2. High-Performance Piezoelectric Nanogenerator of BTO-PVDF Nanofibers for Wearable Sensing. Jiang J; Wan L; Li L; Li P Macromol Rapid Commun; 2024 Mar; 45(6):e2300619. PubMed ID: 38232954 [TBL] [Abstract][Full Text] [Related]
3. Improved Energy Harvesting Ability of Single-Layer Binary Fiber Nanocomposite Membrane for Multifunctional Wearable Hybrid Piezoelectric and Triboelectric Nanogenerator and Self-Powered Sensors. Huang A; Zhu Y; Peng S; Tan B; Peng X ACS Nano; 2024 Jan; 18(1):691-702. PubMed ID: 38147828 [TBL] [Abstract][Full Text] [Related]
4. High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO Athira BS; George A; Vaishna Priya K; Hareesh US; Gowd EB; Surendran KP; Chandran A ACS Appl Mater Interfaces; 2022 Oct; 14(39):44239-44250. PubMed ID: 36129836 [TBL] [Abstract][Full Text] [Related]
5. Porosity Modulated High-Performance Piezoelectric Nanogenerator Based on Organic/Inorganic Nanomaterials for Self-Powered Structural Health Monitoring. Rana MM; Khan AA; Huang G; Mei N; Saritas R; Wen B; Zhang S; Voss P; Abdel-Rahman E; Leonenko Z; Islam S; Ban D ACS Appl Mater Interfaces; 2020 Oct; 12(42):47503-47512. PubMed ID: 32969216 [TBL] [Abstract][Full Text] [Related]
6. Halide Tunablility Leads to Enhanced Biomechanical Energy Harvesting in Lead-Free Cs Paul T; Sahoo A; Maiti S; Gavali DS; Thapa R; Banerjee R ACS Appl Mater Interfaces; 2023 Jul; 15(29):34726-34741. PubMed ID: 37440167 [TBL] [Abstract][Full Text] [Related]
7. High Performance Piezoelectric Nanogenerators Based on Polyvinylidene Fluoride-Graphene Nanoribbon Composite Thin Films. Adıgüzel SP; Ercan N Macromol Rapid Commun; 2024 Oct; 45(19):e2400360. PubMed ID: 38991110 [TBL] [Abstract][Full Text] [Related]
8. Enhancing piezoelectric effect of PVDF electrospun fiber through NiO nanoparticles for wearable applications. Amrutha B; Anand Prabu A; Pathak M Heliyon; 2024 Apr; 10(7):e29192. PubMed ID: 38601609 [TBL] [Abstract][Full Text] [Related]
9. Piezoelectric nanogenerators from sustainable biowaste source: Power harvesting and respiratory monitoring with electrospun crab shell powder-poly(vinylidene fluoride) composite nanofibers. Divya S; Ramasundaram S; Aruchamy K; Oh TH; Levingstone T; Dunne N J Colloid Interface Sci; 2025 Feb; 679(Pt A):324-334. PubMed ID: 39366262 [TBL] [Abstract][Full Text] [Related]
10. Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics. Maity K; Garain S; Henkel K; Schmeißer D; Mandal D ACS Appl Mater Interfaces; 2018 Dec; 10(50):44018-44032. PubMed ID: 30456939 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Piezoelectric Properties of Ag-NPs Doped PVDF Nanocomposite Fibres Membrane Prepared by Near Field Electrospinning. Pan CT; Dutt K; Yen CK; Kumar A; Kaushik AC; Wei DQ; Kumar A; Wen ZH; Hsu WH; Shiue YL Comb Chem High Throughput Screen; 2022; 25(4):720-729. PubMed ID: 33653246 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. Szewczyk PK; Gradys A; Kim SK; Persano L; Marzec M; Kryshtal A; Busolo T; Toncelli A; Pisignano D; Bernasik A; Kar-Narayan S; Sajkiewicz P; Stachewicz U ACS Appl Mater Interfaces; 2020 Mar; 12(11):13575-13583. PubMed ID: 32090543 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Piezoelectric Performance of Various Electrospun PVDF Nanofibers and Related Self-Powered Device Applications. Zhang S; Zhang B; Zhang J; Ren K ACS Appl Mater Interfaces; 2021 Jul; 13(27):32242-32250. PubMed ID: 34197070 [TBL] [Abstract][Full Text] [Related]
14. Tough, Antifreezing, and Piezoelectric Organohydrogel as a Flexible Wearable Sensor for Human-Machine Interaction. Shi Y; Guan Y; Liu M; Kang X; Tian Y; Deng W; Yu P; Ning C; Zhou L; Fu R; Tan G ACS Nano; 2024 Jan; 18(4):3720-3732. PubMed ID: 38237072 [TBL] [Abstract][Full Text] [Related]
15. Screen Printing of Surface-Modified Barium Titanate/Polyvinylidene Fluoride Nanocomposites for High-Performance Flexible Piezoelectric Nanogenerators. Li H; Lim S Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079948 [TBL] [Abstract][Full Text] [Related]
16. Waste cotton textile-derived cellulose composite porous film with enhanced piezoelectric performance for energy harvesting and self-powered sensing. Pan L; Wang Y; Jin Q; Luo Y; Zhou Z; Zhu M Carbohydr Polym; 2024 Dec; 346():122607. PubMed ID: 39245491 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Piezoelectric/Triboelectric Wearable Nanogenerator Based on Stretchable PVDF-PDMS Composite Films. Chen Q; Cao Y; Lu Y; Akram W; Ren S; Niu L; Sun Z; Fang J ACS Appl Mater Interfaces; 2024 Feb; 16(5):6239-6249. PubMed ID: 38272672 [TBL] [Abstract][Full Text] [Related]
18. Bi Veeralingam S; Badhulika S ACS Appl Bio Mater; 2021 Jan; 4(1):14-23. PubMed ID: 35014274 [TBL] [Abstract][Full Text] [Related]
19. Boosting piezoelectric properties of PVDF nanofibers via embedded graphene oxide nanosheets. Salama M; Hamed A; Noman S; Magdy G; Shehata N; Kandas I Sci Rep; 2024 Jul; 14(1):16484. PubMed ID: 39019925 [TBL] [Abstract][Full Text] [Related]
20. All-Textile Piezoelectric Nanogenerator Based on 3D Knitted Fabric Electrode for Wearable Applications. Wan X; Shen Y; Luo T; Xu M; Cong H; Chen C; Jiang G; He H ACS Sens; 2024 Jun; 9(6):2989-2998. PubMed ID: 38771707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]