BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38812107)

  • 1. Clinical evaluation of deep learning-enhanced lymphoma pet imaging with accelerated acquisition.
    Li X; Pan B; Chen C; Yan D; Pan Z; Feng T; Liu H; Gong NJ; Liu F
    J Appl Clin Med Phys; 2024 May; ():e14390. PubMed ID: 38812107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual high-count PET image generation using a deep learning method.
    Liu J; Ren S; Wang R; Mirian N; Tsai YJ; Kulon M; Pucar D; Chen MK; Liu C
    Med Phys; 2022 Sep; 49(9):5830-5840. PubMed ID: 35880541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method to assess image quality for Low-dose PET: analysis of SNR, CNR, bias and image noise.
    Yan J; Schaefferkoette J; Conti M; Townsend D
    Cancer Imaging; 2016 Aug; 16(1):26. PubMed ID: 27565136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-minute acquisition with deep learning-based image filter in the diagnosis of colorectal cancers using total-body
    Liu E; Lyu Z; Yang Y; Lv Y; Zhao Y; Zhang X; Sun T; Jiang L; Liu Z
    EJNMMI Res; 2023 Jul; 13(1):66. PubMed ID: 37428417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of
    Ghafari A; Sheikhzadeh P; Seyyedi N; Abbasi M; Farzenefar S; Yousefirizi F; Ay MR; Rahmim A
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36162408
    [No Abstract]   [Full Text] [Related]  

  • 8. Investigation of PET image quality with acquisition time/bed and enhancement of lesion quantification accuracy through deep progressive learning.
    Yang H; Chen S; Qi M; Chen W; Kong Q; Zhang J; Song S
    EJNMMI Phys; 2024 Jan; 11(1):7. PubMed ID: 38195785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure.
    Wang YJ; Baratto L; Hawk KE; Theruvath AJ; Pribnow A; Thakor AS; Gatidis S; Lu R; Gummidipundi SE; Garcia-Diaz J; Rubin D; Daldrup-Link HE
    Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2771-2781. PubMed ID: 33527176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning enhanced ultra-fast SPECT/CT bone scan in patients with suspected malignancy: quantitative assessment and clinical performance.
    Qi N; Pan B; Meng Q; Yang Y; Feng T; Liu H; Gong NJ; Zhao J
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37307847
    [No Abstract]   [Full Text] [Related]  

  • 11. Ultra high speed SPECT bone imaging enabled by a deep learning enhancement method: a proof of concept.
    Pan B; Qi N; Meng Q; Wang J; Peng S; Qi C; Gong NJ; Zhao J
    EJNMMI Phys; 2022 Jun; 9(1):43. PubMed ID: 35698006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of FDG PET/CT image-based cancer staging and standardized uptake values with simulated reduction of injected FDG dose or acquisition time.
    Niederkohr RD; Hayden SP; Hamill JJ; Jones JP; Schaefferkoetter JD; Chiu E
    Am J Nucl Med Mol Imaging; 2021; 11(5):428-442. PubMed ID: 34754613
    [No Abstract]   [Full Text] [Related]  

  • 13. Deep learning-assisted PET imaging achieves fast scan/low-dose examination.
    Xing Y; Qiao W; Wang T; Wang Y; Li C; Lv Y; Xi C; Liao S; Qian Z; Zhao J
    EJNMMI Phys; 2022 Feb; 9(1):7. PubMed ID: 35122172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing positron emission tomography image acquisition protocols in integrated positron emission tomography/magnetic resonance imaging.
    Hartung-Knemeyer V; Beiderwellen KJ; Buchbender C; Kuehl H; Lauenstein TC; Bockisch A; Poeppel TD
    Invest Radiol; 2013 May; 48(5):290-4. PubMed ID: 23399811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of acquisitions using total-body PET/CT with a half-dose [
    Chen Z; Wang Y; Yang X; Li L; Huo Y; Yu X; Xiao X; Zhang C; Chen Y; Zhao H; Zhou Y; Huang G; Liu J; Chen R
    Eur J Nucl Med Mol Imaging; 2023 Nov; 50(13):3961-3969. PubMed ID: 37535107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks.
    Zaker N; Haddad K; Faghihi R; Arabi H; Zaidi H
    Eur J Nucl Med Mol Imaging; 2022 Oct; 49(12):4048-4063. PubMed ID: 35716176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low
    Yan L; Wang Z; Li D; Wang Y; Yang G; Zhao Y; Kong Y; Wang R; Wu R; Wang Z
    Quant Imaging Med Surg; 2024 Jan; 14(1):111-122. PubMed ID: 38223079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning.
    Sun H; Jiang Y; Yuan J; Wang H; Liang D; Fan W; Hu Z; Zhang N
    Quant Imaging Med Surg; 2022 Dec; 12(12):5326-5342. PubMed ID: 36465830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of quantitative accuracy for deep learning based denoising in oncological PET.
    Lu W; Onofrey JA; Lu Y; Shi L; Ma T; Liu Y; Liu C
    Phys Med Biol; 2019 Aug; 64(16):165019. PubMed ID: 31307019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated Reduced-Count Whole-Body FDG PET: Evaluation in Children and Young Adults Imaged on a Digital PET Scanner.
    Alves VPV; Brady S; Ata NA; Li Y; MacLean J; Zhang B; Sharp SE; Trout AT
    AJR Am J Roentgenol; 2022 Dec; 219(6):952-961. PubMed ID: 35731102
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.