These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38812288)

  • 41. Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on Depth-of-Field.
    Floriano A; Delisle-Rodriguez D; Diez PF; Bastos-Filho TF
    Comput Methods Programs Biomed; 2020 Feb; 184():105271. PubMed ID: 31881401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Utilizing Retinotopic Mapping for a Multi-Target SSVEP BCI With a Single Flicker Frequency.
    Maye A; Zhang D; Engel AK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):1026-1036. PubMed ID: 28459691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training.
    Berke Guney O; Ozkan H
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36535036
    [No Abstract]   [Full Text] [Related]  

  • 46. Implementing Over 100 Command Codes for a High-Speed Hybrid Brain-Computer Interface Using Concurrent P300 and SSVEP Features.
    Xu M; Han J; Wang Y; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3073-3082. PubMed ID: 32149621
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Steady-State Visually Evoked Fields (SSVEF) associated with affective emotions.
    Tanaka K; Araki T; Kuriki S; Uchikawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4422-5. PubMed ID: 24110714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI.
    Yang C; Yan X; Wang Y; Chen Y; Zhang H; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34237711
    [No Abstract]   [Full Text] [Related]  

  • 49. A High-Rate Hybrid BCI System Based on High-Frequency SSVEP and sEMG.
    Cui H; Chi X; Wang L; Chen X
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):5688-5698. PubMed ID: 37792662
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
    Waytowich NR; Krusienski DJ
    J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial filters to detect steady-state visual evoked potentials elicited by high frequency stimulation: BCI application.
    Molina GG; Mihajlovic V
    Biomed Tech (Berl); 2010 Jun; 55(3):173-82. PubMed ID: 20415628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System.
    Borna A; Carter TR; Colombo AP; Jau YY; McKay J; Weisend M; Taulu S; Stephen JM; Schwindt PDD
    PLoS One; 2020; 15(1):e0227684. PubMed ID: 31978102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multisymbol Time Division Coding for High-Frequency Steady-State Visual Evoked Potential-Based Brain-Computer Interface.
    Ye X; Yang C; Chen Y; Wang Y; Gao X; Zhang H
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1693-1704. PubMed ID: 35714087
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.
    Chang HC; Lee PL; Lo MT; Lee IH; Yeh TK; Chang CY
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):305-12. PubMed ID: 22203724
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli.
    Kimura Y; Tanaka T; Higashi H; Morikawa N
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2831-8. PubMed ID: 23739780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of Checkerboard Spatial Frequencies for Steady-State Visual Evoked Potential Brain-Computer Interfaces.
    Waytowich NR; Yamani Y; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):557-565. PubMed ID: 27542113
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimizing Visual Stimulation Paradigms for User-Friendly SSVEP-Based BCIs.
    Gu M; Pei W; Gao X; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1090-1099. PubMed ID: 38437148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.