These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38812315)
1. UbNiRF: A Hybrid Framework Based on Null Importances and Random Forest that Combines Multiple Features to Predict Ubiquitination Sites in Li X; Yuan Z; Chen Y Front Biosci (Landmark Ed); 2024 May; 29(5):197. PubMed ID: 38812315 [TBL] [Abstract][Full Text] [Related]
2. Computational prediction of protein ubiquitination sites mapping on Arabidopsis thaliana. Mosharaf MP; Hassan MM; Ahmed FF; Khatun MS; Moni MA; Mollah MNH Comput Biol Chem; 2020 Apr; 85():107238. PubMed ID: 32114285 [TBL] [Abstract][Full Text] [Related]
3. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Hasan MM; Basith S; Khatun MS; Lee G; Manavalan B; Kurata H Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32910169 [TBL] [Abstract][Full Text] [Related]
4. PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy. Wang H; Li H; Gao W; Xie J Anal Biochem; 2022 Dec; 658():114935. PubMed ID: 36206844 [TBL] [Abstract][Full Text] [Related]
5. Fuzzy based algorithms to predict MicroRNA regulated protein interaction pathways and ranking estimation in Arabidopsis thaliana. Manikandan P; Ramyachitra D; Nandhini R Gene; 2019 Apr; 692():170-175. PubMed ID: 30641215 [TBL] [Abstract][Full Text] [Related]
6. HSM6AP: a high-precision predictor for the Homo Li J; He S; Guo F; Zou Q RNA Biol; 2021 Nov; 18(11):1882-1892. PubMed ID: 33446014 [TBL] [Abstract][Full Text] [Related]
7. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features. Nilamyani AN; Auliah FN; Moni MA; Shoombuatong W; Hasan MM; Kurata H Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800121 [TBL] [Abstract][Full Text] [Related]
8. Improved Prediction of Protein-Protein Interaction Mapping on Islam MM; Alam MJ; Ahmed FF; Hasan MM; Mollah MNH Protein Pept Lett; 2021; 28(1):74-83. PubMed ID: 32520672 [TBL] [Abstract][Full Text] [Related]
9. Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework. Gaffar S; Tayara H; Chong KT Comput Biol Med; 2024 May; 174():108438. PubMed ID: 38613893 [TBL] [Abstract][Full Text] [Related]
10. PseAraUbi: predicting arabidopsis ubiquitination sites by incorporating the physico-chemical and structural features. Wang W; Zhang Y; Liu D; Zhang H; Wang X; Zhou Y Plant Mol Biol; 2022 Sep; 110(1-2):81-92. PubMed ID: 35773617 [TBL] [Abstract][Full Text] [Related]
11. Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs. Chen Z; Chen YZ; Wang XF; Wang C; Yan RX; Zhang Z PLoS One; 2011; 6(7):e22930. PubMed ID: 21829559 [TBL] [Abstract][Full Text] [Related]
12. PSSM-Sumo: deep learning based intelligent model for prediction of sumoylation sites using discriminative features. Khan S; AlQahtani SA; Noor S; Ahmad N BMC Bioinformatics; 2024 Aug; 25(1):284. PubMed ID: 39215231 [TBL] [Abstract][Full Text] [Related]
13. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359 [No Abstract] [Full Text] [Related]
14. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377 [TBL] [Abstract][Full Text] [Related]
15. An Improved Computational Prediction Model for Lysine Succinylation Sites Mapping on Tasmia SA; Ahmed FF; Mosharaf P; Hasan M; Mollah NH Curr Genomics; 2021 Feb; 22(2):122-136. PubMed ID: 34220299 [TBL] [Abstract][Full Text] [Related]
16. Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features. Chen Z; Zhou Y; Zhang Z; Song J Brief Bioinform; 2015 Jul; 16(4):640-57. PubMed ID: 25212598 [TBL] [Abstract][Full Text] [Related]
17. hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties. Chen Z; Zhou Y; Song J; Zhang Z Biochim Biophys Acta; 2013 Aug; 1834(8):1461-7. PubMed ID: 23603789 [TBL] [Abstract][Full Text] [Related]
18. Prediction of microRNA-regulated protein interaction pathways in Arabidopsis using machine learning algorithms. Kurubanjerdjit N; Huang CH; Lee YL; Tsai JJ; Ng KL Comput Biol Med; 2013 Nov; 43(11):1645-52. PubMed ID: 24209909 [TBL] [Abstract][Full Text] [Related]
19. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features. Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307 [TBL] [Abstract][Full Text] [Related]
20. PseU-KeMRF: A Novel Method for Identifying RNA Pseudouridine Sites. Chen M; Zou Q; Qi R; Ding Y IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1423-1435. PubMed ID: 38625768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]