These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38812315)
21. Machine learning-based approaches for ubiquitination site prediction in human proteins. Pourmirzaei M; Ramazi S; Esmaili F; Shojaeilangari S; Allahvardi A BMC Bioinformatics; 2023 Nov; 24(1):449. PubMed ID: 38017391 [TBL] [Abstract][Full Text] [Related]
22. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition. Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682 [TBL] [Abstract][Full Text] [Related]
23. Prediction of lysine ubiquitination with mRMR feature selection and analysis. Cai Y; Huang T; Hu L; Shi X; Xie L; Li Y Amino Acids; 2012 Apr; 42(4):1387-95. PubMed ID: 21267749 [TBL] [Abstract][Full Text] [Related]
24. O-glycosylation site prediction for Zhu Y; Yin S; Zheng J; Shi Y; Jia C J Bioinform Comput Biol; 2022 Feb; 20(1):2150029. PubMed ID: 34806952 [TBL] [Abstract][Full Text] [Related]
25. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences. Cai B; Jiang X BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649 [TBL] [Abstract][Full Text] [Related]
26. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines. Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456 [TBL] [Abstract][Full Text] [Related]
27. Prediction of Citrullination Sites on the Basis of mRMR Method and SNN. Liu M; Liu G Comb Chem High Throughput Screen; 2019; 22(10):705-715. PubMed ID: 31782357 [TBL] [Abstract][Full Text] [Related]
28. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine. Deng L; Pan J; Xu X; Yang W; Liu C; Liu H BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073 [TBL] [Abstract][Full Text] [Related]
29. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information. Ali F; Ahmed S; Swati ZNK; Akbar S J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959 [TBL] [Abstract][Full Text] [Related]
30. Computational identification of ubiquitination sites in Arabidopsis thaliana using convolutional neural networks. Wang X; Yan R; Chen YZ; Wang Y Plant Mol Biol; 2021 Apr; 105(6):601-610. PubMed ID: 33527202 [TBL] [Abstract][Full Text] [Related]
32. Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm. Ju Z; Wang SY J Theor Biol; 2018 Nov; 457():6-13. PubMed ID: 30125576 [TBL] [Abstract][Full Text] [Related]
33. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967 [TBL] [Abstract][Full Text] [Related]
34. Application of machine learning techniques for predicting survival in ovarian cancer. Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641 [TBL] [Abstract][Full Text] [Related]
35. m5CPred-SVM: a novel method for predicting m5C sites of RNA. Chen X; Xiong Y; Liu Y; Chen Y; Bi S; Zhu X BMC Bioinformatics; 2020 Oct; 21(1):489. PubMed ID: 33126851 [TBL] [Abstract][Full Text] [Related]
36. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features. Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954 [TBL] [Abstract][Full Text] [Related]
37. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease. Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840 [TBL] [Abstract][Full Text] [Related]
38. Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins. Jamal S; Ali W; Nagpal P; Grover A; Grover S J Transl Med; 2021 May; 19(1):218. PubMed ID: 34030700 [TBL] [Abstract][Full Text] [Related]
39. Analysis and Prediction of Myristoylation Sites Using the mRMR Method, the IFS Method and an Extreme Learning Machine Algorithm. Wang S; Zhang YH; Huang G; Chen L; Cai YD Comb Chem High Throughput Screen; 2017; 20(2):96-106. PubMed ID: 28000567 [TBL] [Abstract][Full Text] [Related]
40. Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework. Wei L; He W; Malik A; Su R; Cui L; Manavalan B Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33152766 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]