These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38812315)
41. Comparative analyses between retained introns and constitutively spliced introns in Arabidopsis thaliana using random forest and support vector machine. Mao R; Raj Kumar PK; Guo C; Zhang Y; Liang C PLoS One; 2014; 9(8):e104049. PubMed ID: 25110928 [TBL] [Abstract][Full Text] [Related]
42. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904 [TBL] [Abstract][Full Text] [Related]
43. Extended dipeptide composition framework for accurate identification of anticancer peptides. Ullah F; Salam A; Nadeem M; Amin F; AlSalman H; Abrar M; Alfakih T Sci Rep; 2024 Jul; 14(1):17381. PubMed ID: 39075193 [TBL] [Abstract][Full Text] [Related]
45. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites. Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243 [TBL] [Abstract][Full Text] [Related]
46. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC. Ju Z; He JJ J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434 [TBL] [Abstract][Full Text] [Related]
47. Computational Method for Identifying Malonylation Sites by Using Random Forest Algorithm. Wang S; Li J; Sun X; Zhang YH; Huang T; Cai Y Comb Chem High Throughput Screen; 2020; 23(4):304-312. PubMed ID: 30588879 [TBL] [Abstract][Full Text] [Related]
48. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC. Ju Z; He JJ J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688 [TBL] [Abstract][Full Text] [Related]
49. Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma. Li MX; Sun XM; Cheng WG; Ruan HJ; Liu K; Chen P; Xu HJ; Gao SG; Feng XS; Qi YJ BMC Cancer; 2021 Aug; 21(1):906. PubMed ID: 34372798 [TBL] [Abstract][Full Text] [Related]
50. Mini-review: Recent advances in post-translational modification site prediction based on deep learning. Meng L; Chan WS; Huang L; Liu L; Chen X; Zhang W; Wang F; Cheng K; Sun H; Wong KC Comput Struct Biotechnol J; 2022; 20():3522-3532. PubMed ID: 35860402 [TBL] [Abstract][Full Text] [Related]
51. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
52. Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection. Gao YF; Li BQ; Cai YD; Feng KY; Li ZD; Jiang Y Mol Biosyst; 2013 Jan; 9(1):61-9. PubMed ID: 23117653 [TBL] [Abstract][Full Text] [Related]
53. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites. Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647 [TBL] [Abstract][Full Text] [Related]
54. RFAthM6A: a new tool for predicting m Wang X; Yan R Plant Mol Biol; 2018 Feb; 96(3):327-337. PubMed ID: 29340952 [TBL] [Abstract][Full Text] [Related]
55. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features. Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707 [TBL] [Abstract][Full Text] [Related]
56. Investigating the Precise Identification of Citrullination Sites with High- Performance Score Metrics Using a Powerful Computation Predicting Tool. Ahmed FF; Podder A; Bulbul MF; Hossain MA; Hasan M; Sarkar MAR; Kim D Comb Chem High Throughput Screen; 2024; 27(9):1381-1393. PubMed ID: 37702240 [TBL] [Abstract][Full Text] [Related]
57. Predicting Citrullination Sites in Protein Sequences Using mRMR Method and Random Forest Algorithm. Zhang Q; Sun X; Feng K; Wang S; Zhang YH; Wang S; Lu L; Cai YD Comb Chem High Throughput Screen; 2017; 20(2):164-173. PubMed ID: 28029071 [TBL] [Abstract][Full Text] [Related]
58. AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning. Charoenkwan P; Ahmed S; Nantasenamat C; Quinn JMW; Moni MA; Lio' P; Shoombuatong W Sci Rep; 2022 May; 12(1):7697. PubMed ID: 35546347 [TBL] [Abstract][Full Text] [Related]
59. Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting. Ali F; Kumar H; Patil S; Kotecha K; Banjar A; Daud A Comput Biol Med; 2022 Jun; 145():105533. PubMed ID: 35447463 [TBL] [Abstract][Full Text] [Related]
60. Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs. Xiang T; Li T; Li J; Li X; Wang J FASEB J; 2023 Jun; 37(6):e22961. PubMed ID: 37178007 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]