BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38812372)

  • 1. Comparative model of minimal spinal cord injury reveals a rather anti-inflammatory response in the lesion site as well as increased proliferation in the central canal lining in the neonates compared to the adult rats.
    Ševc J; Mochnacký F; Košuth J; Alexovič Matiašová A; Slovinská L; Blaško J; Bukhun I; Holota R; Tomori Z; Daxnerová Z
    Dev Neurobiol; 2024 May; ():. PubMed ID: 38812372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantation of Engineered Axon Tracts to Bridge Spinal Cord Injury Beyond the Glial Scar in Rats.
    Sullivan PZ; AlBayar A; Burrell JC; Browne KD; Arena J; Johnson V; Smith DH; Cullen DK; Ozturk AK
    Tissue Eng Part A; 2021 Oct; 27(19-20):1264-1274. PubMed ID: 33430694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis.
    Edwards-Faret G; González-Pinto K; Cebrián-Silla A; Peñailillo J; García-Verdugo JM; Larraín J
    Neural Dev; 2021 Feb; 16(1):2. PubMed ID: 33526076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential activation of astrocytes and microglia after spinal cord injury in the fetal rat.
    Fujimoto Y; Yamasaki T; Tanaka N; Mochizuki Y; Kajihara H; Ikuta Y; Ochi M
    Eur Spine J; 2006 Feb; 15(2):223-33. PubMed ID: 16292632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat.
    Mothe AJ; Tator CH
    Neuroscience; 2005; 131(1):177-87. PubMed ID: 15680701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural progenitor cells but not astrocytes respond distally to thoracic spinal cord injury in rat models.
    Nguyen T; Mao Y; Sutherland T; Gorrie CA
    Neural Regen Res; 2017 Nov; 12(11):1885-1894. PubMed ID: 29239336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transplantation of neural precursors generated from spinal progenitor cells reduces inflammation in spinal cord injury via NF-κB pathway inhibition.
    Karova K; Wainwright JV; Machova-Urdzikova L; Pisal RV; Schmidt M; Jendelova P; Jhanwar-Uniyal M
    J Neuroinflammation; 2019 Jan; 16(1):12. PubMed ID: 30654804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the Cellular Response to Acute Spinal Cord Injury between Developing and Mature Rats Highlights the Potential Significance of the Inflammatory Response.
    Sutherland TC; Mathews KJ; Mao Y; Nguyen T; Gorrie CA
    Front Cell Neurosci; 2016; 10():310. PubMed ID: 28133446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord.
    Lien BV; Tuszynski MH; Lu P
    Exp Neurol; 2019 Apr; 314():46-57. PubMed ID: 30653967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron microscopic study of the progeny of ependymal stem cells in the normal and injured spinal cord.
    Attar A; Kaptanoglu E; Aydin Z; Ayten M; Sargon MF
    Surg Neurol; 2005; 64 Suppl 2():S28-32. PubMed ID: 16256837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury.
    Hu R; Zhou J; Luo C; Lin J; Wang X; Li X; Bian X; Li Y; Wan Q; Yu Y; Feng H
    J Neurosurg Spine; 2010 Aug; 13(2):169-80. PubMed ID: 20672952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of CLIP3 Upregulation on Astrocyte Proliferation and Subsequent Glial Scar Formation in the Rat Spinal Cord via STAT3 Pathway After Injury.
    Chen X; Chen C; Hao J; Zhang J; Zhang F
    J Mol Neurosci; 2018 Jan; 64(1):117-128. PubMed ID: 29218499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia.
    Kusuyama K; Tachibana T; Yamanaka H; Okubo M; Yoshiya S; Noguchi K
    Spine J; 2018 Jun; 18(6):1062-1069. PubMed ID: 29355786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats.
    Gwak YS; Kang J; Unabia GC; Hulsebosch CE
    Exp Neurol; 2012 Apr; 234(2):362-72. PubMed ID: 22036747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury.
    Liu Y; Tan B; Wang L; Long Z; Li Y; Liao W; Wu Y
    Int J Clin Exp Pathol; 2015; 8(4):3835-42. PubMed ID: 26097566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysialic-Acid-Based Micelles Promote Neural Regeneration in Spinal Cord Injury Therapy.
    Wang XJ; Peng CH; Zhang S; Xu XL; Shu GF; Qi J; Zhu YF; Xu DM; Kang XQ; Lu KJ; Jin FY; Yu RS; Ying XY; You J; Du YZ; Ji JS
    Nano Lett; 2019 Feb; 19(2):829-838. PubMed ID: 30605619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-nucleus RNA sequencing identified cells with ependymal cell-like features enriched in neonatal mice after spinal cord injury.
    Ikeda-Yorifuji I; Tsujioka H; Sakata Y; Yamashita T
    Neurosci Res; 2022 Aug; 181():22-38. PubMed ID: 35452717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.
    Khaing ZZ; Milman BD; Vanscoy JE; Seidlits SK; Grill RJ; Schmidt CE
    J Neural Eng; 2011 Aug; 8(4):046033. PubMed ID: 21753237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression injury in the mouse spinal cord elicits a specific proliferative response and distinct cell fate acquisition along rostro-caudal and dorso-ventral axes.
    McDonough A; Hoang AN; Monterrubio AM; Greenhalgh S; Martínez-Cerdeño V
    Neuroscience; 2013 Dec; 254():1-17. PubMed ID: 24042034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.