These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 38812514)

  • 1. Prospects for the computational humanization of antibodies and nanobodies.
    Gordon GL; Raybould MIJ; Wong A; Deane CM
    Front Immunol; 2024; 15():1399438. PubMed ID: 38812514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Llamanade: An open-source computational pipeline for robust nanobody humanization.
    Sang Z; Xiang Y; Bahar I; Shi Y
    Structure; 2022 Mar; 30(3):418-429.e3. PubMed ID: 34895471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning.
    Prihoda D; Maamary J; Waight A; Juan V; Fayadat-Dilman L; Svozil D; Bitton DA
    MAbs; 2022; 14(1):2020203. PubMed ID: 35133949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress in nanobody and its application in diagnosis].
    Kong Q; Yao Y; Chen R; Lu S
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1351-61. PubMed ID: 25720150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody humanization by structure-based computational protein design.
    Choi Y; Hua C; Sentman CL; Ackerman ME; Bailey-Kellogg C
    MAbs; 2015; 7(6):1045-57. PubMed ID: 26252731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NanoBERTa-ASP: predicting nanobody paratope based on a pretrained RoBERTa model.
    Li S; Meng X; Li R; Huang B; Wang X
    BMC Bioinformatics; 2024 Mar; 25(1):122. PubMed ID: 38515052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humanization of antibodies using a machine learning approach on large-scale repertoire data.
    Marks C; Hummer AM; Chin M; Deane CM
    Bioinformatics; 2021 Nov; 37(22):4041-4047. PubMed ID: 34110413
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Sang Z; Xiang Y; Bahar I; Shi Y
    bioRxiv; 2021 Aug; ():. PubMed ID: 34373858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold.
    Vincke C; Loris R; Saerens D; Martinez-Rodriguez S; Muyldermans S; Conrath K
    J Biol Chem; 2009 Jan; 284(5):3273-3284. PubMed ID: 19010777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering.
    Verkhivker G
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Humanizing Mutations on the Stability of the Llama Single-Domain Variable Region.
    Soler MA; Medagli B; Wang J; Oloketuyi S; Bajc G; Huang H; Fortuna S; de Marco A
    Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33530572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody.
    Apgar JR; Mader M; Agostinelli R; Benard S; Bialek P; Johnson M; Gao Y; Krebs M; Owens J; Parris K; St Andre M; Svenson K; Morris C; Tchistiakova L
    MAbs; 2016 Oct; 8(7):1302-1318. PubMed ID: 27625211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunogenicity and humanization of single-domain antibodies.
    Rossotti MA; Bélanger K; Henry KA; Tanha J
    FEBS J; 2022 Jul; 289(14):4304-4327. PubMed ID: 33751827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular immunology approach to antibody humanization and functional optimization.
    Lazar GA; Desjarlais JR; Jacinto J; Karki S; Hammond PW
    Mol Immunol; 2007 Mar; 44(8):1986-98. PubMed ID: 17079018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the nativeness of antibody sequences using long short-term memory networks.
    Wollacott AM; Xue C; Qin Q; Hua J; Bohnuud T; Viswanathan K; Kolachalama VB
    Protein Eng Des Sel; 2019 Dec; 32(7):347-354. PubMed ID: 31504835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrixed CDR grafting: A neoclassical framework for antibody humanization and developability.
    Gupta P; Horspool AM; Trivedi G; Moretti G; Datar A; Huang ZF; Chiecko J; Kenny CH; Marlow MS
    J Biol Chem; 2024 Jan; 300(1):105555. PubMed ID: 38072062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humanization of Antibodies using a Statistical Inference Approach.
    Clavero-Álvarez A; Di Mambro T; Perez-Gaviro S; Magnani M; Bruscolini P
    Sci Rep; 2018 Oct; 8(1):14820. PubMed ID: 30287940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally driven antibody engineering enables simultaneous humanization and thermostabilization.
    Choi Y; Ndong C; Griswold KE; Bailey-Kellogg C
    Protein Eng Des Sel; 2016 Oct; 29(10):419-426. PubMed ID: 27334453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody humanization-the Influence of the antibody framework on the CDR-H3 loop ensemble in solution.
    Fernández-Quintero ML; Heiss MC; Liedl KR
    Protein Eng Des Sel; 2019 Dec; 32(9):411-422. PubMed ID: 32129452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Insights into the Design of Synthetic Nanobody Libraries.
    Valdés-Tresanco MS; Molina-Zapata A; Pose AG; Moreno E
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.