BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 3881265)

  • 21. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate.
    Boonstra J; Sips HJ; Konings WN
    Eur J Biochem; 1976 Oct; 69(1):35-44. PubMed ID: 791648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transplasma membrane electron and proton transport is inhibited by chloroquine.
    Toole-Simms W; Sun IL; Morré DJ; Crane FL
    Biochem Int; 1990; 21(4):761-9. PubMed ID: 2173587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bombesin stimulates transplasma-membrane electron transport by Swiss 3T3 cells.
    Sun IL; Crane FL; Löw H
    Biochim Biophys Acta; 1994 Mar; 1221(2):206-10. PubMed ID: 8148400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diferric transferrin reduction stimulates the Na+/H+ antiport of HeLa cells.
    Sun IL; Garcia-Cañero R; Liu W; Toole-Simms W; Crane FL; Morré DJ; Löw H
    Biochem Biophys Res Commun; 1987 May; 145(1):467-73. PubMed ID: 3036130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The antitumor drug, cis diamminedichloro-platinum, inhibits trans plasmalemma electron transport in HeLa cells.
    Sun IL; Crane FL
    Biochem Int; 1984 Sep; 9(3):299-306. PubMed ID: 6542367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for the extracellular reduction of ferricyanide by rat liver. A trans-plasma membrane redox system.
    Clark MG; Partick EJ; Patten GS; Crane FL; Löw H; Grebing C
    Biochem J; 1981 Dec; 200(3):565-72. PubMed ID: 6282252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruthenium ammine complexes as electron acceptors for growth stimulation by plasma membrane electron transport.
    Laliberté JF; Sun IL; Crane FL; Clarke MJ
    J Bioenerg Biomembr; 1987 Feb; 19(1):69-81. PubMed ID: 3571216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for coenzyme Q function in transplasma membrane electron transport.
    Sun IL; Sun EE; Crane FL; Morré DJ
    Biochem Biophys Res Commun; 1990 Nov; 172(3):979-84. PubMed ID: 2244922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of cytosolic protein kinase C activity by ferricyanide: priming event seems transmembrane redox signalling. A study on transformed C3H/10T1/2 cells in culture.
    Malviya AN; Anglard P
    FEBS Lett; 1986 May; 200(2):265-70. PubMed ID: 3011496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in intracellular redox and energy status during induced transplasma membrane electron transport in Cuscuta protoplasts.
    Revis S; Misra PC
    Biochem Biophys Res Commun; 1988 Oct; 156(2):940-6. PubMed ID: 2973317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transplasma membrane redox system in HL-60 cells is modulated during TPA-induced differentiation.
    Burón MI; Rodriguez-Aguilera JC; Alcaín FJ; Navas P
    Biochem Biophys Res Commun; 1993 Apr; 192(2):439-45. PubMed ID: 8484755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties and regulation of a trans-plasma membrane redox system of perfused rat heart.
    Löw H; Crane FL; Partick EJ; Patten GS; Clark MG
    Biochim Biophys Acta; 1984 Jun; 804(2):253-60. PubMed ID: 6722187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification of transplasma membrane oxidoreduction by SV40 transformation of 3T3 cells.
    Löw H; Crane FL; Grebing C; Isaksson M; Lindgren A; Sun IL
    J Bioenerg Biomembr; 1991 Dec; 23(6):903-17. PubMed ID: 1663950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.
    Santos-Ocaña C; Navas P; Crane FL; Córdoba F
    J Bioenerg Biomembr; 1995 Dec; 27(6):597-603. PubMed ID: 8746846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system.
    Alcain FJ; Buron MI; Villalba JM; Navas P
    Biochim Biophys Acta; 1991 Mar; 1073(2):380-5. PubMed ID: 2009284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A highly sensitive colorimetric microplate ferrocyanide assay applied to ascorbate-stimulated transplasma membrane ferricyanide reduction and mitochondrial succinate oxidation.
    Lane DJ; Lawen A
    Anal Biochem; 2008 Feb; 373(2):287-95. PubMed ID: 17949676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth of rho 0 human Namalwa cells lacking oxidative phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme Q10 putatively acting through the plasma membrane oxidase.
    Martinus RD; Linnane AW; Nagley P
    Biochem Mol Biol Int; 1993 Dec; 31(6):997-1005. PubMed ID: 8193603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase.
    Van Duijn MM; Van der Zee J; VanSteveninck J; Van den Broek PJ
    J Biol Chem; 1998 May; 273(22):13415-20. PubMed ID: 9593673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 13C-NMR studies of transmembrane electron transfer to extracellular ferricyanide in human erythrocytes.
    Himmelreich U; Kuchel PW
    Eur J Biochem; 1997 Jun; 246(3):638-45. PubMed ID: 9219520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.