These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38812718)

  • 1. Combining compositional data sets introduces error in covariance network reconstruction.
    Brunner JD; Robinson AJ; Chain PSG
    ISME Commun; 2024 Jan; 4(1):ycae057. PubMed ID: 38812718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical Methods for Microbiome Compositional Data Network Inference: A Survey.
    Chen L; Wan H; He Q; He S; Deng M
    J Comput Biol; 2022 Jul; 29(7):704-723. PubMed ID: 35404093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse and compositionally robust inference of microbial ecological networks.
    Kurtz ZD; Müller CL; Miraldi ER; Littman DR; Blaser MJ; Bonneau RA
    PLoS Comput Biol; 2015 May; 11(5):e1004226. PubMed ID: 25950956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-Kingdom Networks of Canola Microbiome Reveal Bradyrhizobium as Keystone Species and Underline the Importance of Bulk Soil in Microbial Studies to Enhance Canola Production.
    Floc'h JB; Hamel C; Laterrière M; Tidemann B; St-Arnaud M; Hijri M
    Microb Ecol; 2022 Nov; 84(4):1166-1181. PubMed ID: 34727198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring microbial co-occurrence networks from amplicon data: a systematic evaluation.
    Kishore D; Birzu G; Hu Z; DeLisi C; Korolev KS; Segrè D
    mSystems; 2023 Aug; 8(4):e0096122. PubMed ID: 37338270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungi stabilize connectivity in the lung and skin microbial ecosystems.
    Tipton L; Müller CL; Kurtz ZD; Huang L; Kleerup E; Morris A; Bonneau R; Ghedin E
    Microbiome; 2018 Jan; 6(1):12. PubMed ID: 29335027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic farming promotes the abundance of fungi keystone taxa in bacteria-fungi interkingdom networks.
    Matteoli FP; Silva AMM; de Araújo VLVP; Feiler HP; Cardoso EJBN
    World J Microbiol Biotechnol; 2024 Mar; 40(4):119. PubMed ID: 38429532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct interaction network inference for compositional data via codaloss.
    Chen L; He S; Zhai Y; Deng M
    J Bioinform Comput Biol; 2020 Dec; 18(6):2050037. PubMed ID: 33106076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational Approximation-Based Model Selection for Microbial Network Inference.
    Yooseph S; Tavakoli S
    J Comput Biol; 2022 Jul; 29(7):724-737. PubMed ID: 35549398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Truffle Microbiome Is Driven by Fruit Body Compartmentalization Rather than Soils Conditioned by Different Host Trees.
    Liu D; Pérez-Moreno J; He X; Garibay-Orijel R; Yu F
    mSphere; 2021 Aug; 6(4):e0003921. PubMed ID: 34378984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Inference of Co-Occurrence Networks in the Bovine Rumen Microbiome.
    Zheng H; Wang H; Dewhurst RJ; Roehe R
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):858-867. PubMed ID: 30403635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring correlation networks from genomic survey data.
    Friedman J; Alm EJ
    PLoS Comput Biol; 2012; 8(9):e1002687. PubMed ID: 23028285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. gCoda: Conditional Dependence Network Inference for Compositional Data.
    Fang H; Huang C; Zhao H; Deng M
    J Comput Biol; 2017 Jul; 24(7):699-708. PubMed ID: 28489411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevation-related climate trends dominate fungal co-occurrence network structure and the abundance of keystone taxa on Mt. Norikura, Japan.
    Yang Y; Shi Y; Kerfahi D; Ogwu MC; Wang J; Dong K; Takahashi K; Moroenyane I; Adams JM
    Sci Total Environ; 2021 Dec; 799():149368. PubMed ID: 34352461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core Rhizosphere Microbiomes of Dryland Wheat Are Influenced by Location and Land Use History.
    Schlatter DC; Yin C; Hulbert S; Paulitz TC
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sets2Networks: network inference from repeated observations of sets.
    Clark NR; Dannenfelser R; Tan CM; Komosinski ME; Ma'ayan A
    BMC Syst Biol; 2012 Jul; 6():89. PubMed ID: 22824380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vaginal Microbiome Metagenome Inference Accuracy: Differential Measurement Error according to Community Composition.
    Carter KA; Fodor AA; Balkus JE; Zhang A; Serrano MG; Buck GA; Engel SM; Wu MC; Sun S
    mSystems; 2023 Apr; 8(2):e0100322. PubMed ID: 36975801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifts in Soil Microbial Community Composition, Function, and Co-occurrence Network of
    Zhu P; Yang S; Wu Y; Ru Y; Yu X; Wang L; Guo W
    Front Microbiol; 2022; 13():858125. PubMed ID: 35928147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.