These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38812735)

  • 1. Research on autonomous navigation system of greenhouse electric crawler tractor based on LiDAR.
    Guo H; Li Y; Wang H; Wang T; Rong L; Wang H; Wang Z; Wang C; Zhang J; Huo Y; Guo S
    Front Plant Sci; 2024; 15():1377269. PubMed ID: 38812735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and 2D Lidar SLAM.
    Jiang S; Wang S; Yi Z; Zhang M; Lv X
    Front Plant Sci; 2022; 13():815218. PubMed ID: 35360319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under ROS.
    Zhao J; Liu S; Li J
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Indoor Positioning System of Greenhouse Robot Based on UWB/IMU/ODOM/LIDAR.
    Long Z; Xiang Y; Lei X; Li Y; Hu Z; Dai X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on orchard navigation method based on fusion of 3D SLAM and point cloud positioning.
    Xia Y; Lei X; Pan J; Chen L; Zhang Z; Lyu X
    Front Plant Sci; 2023; 14():1207742. PubMed ID: 37434606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Positioning and Navigation System of Greenhouse Mobile Robot Based on Multi-Sensor Fusion.
    Cheng B; He X; Li X; Zhang N; Song W; Wu H
    Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and development of orchard autonomous navigation spray system.
    Wang S; Song J; Qi P; Yuan C; Wu H; Zhang L; Liu W; Liu Y; He X
    Front Plant Sci; 2022; 13():960686. PubMed ID: 35979071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microrobot Path Planning Based on the Multi-Module DWA Method in Crossing Dense Obstacle Scenario.
    Zeng D; Chen H; Yu Y; Hu Y; Deng Z; Zhang P; Xie D
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on obstacle avoidance optimization and path planning of autonomous vehicles based on attention mechanism combined with multimodal information decision-making thoughts of robots.
    Wu X; Wang G; Shen N
    Front Neurorobot; 2023; 17():1269447. PubMed ID: 37811356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and experimental analysis of a small integrated edge navigation sensor based on principle of circular arc array.
    Xie B; Liu J; Jiang H; Cai L; Liu L; Li Y
    Front Plant Sci; 2022; 13():892388. PubMed ID: 35991398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and experiments with a SLAM system for low-density canopy environments in greenhouses based on an improved Cartographer framework.
    Tan H; Zhao X; Zhai C; Fu H; Chen L; Yang M
    Front Plant Sci; 2024; 15():1276799. PubMed ID: 38362453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.
    Wei K; Ren B
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Rubber-Tapping Robot Forest Navigation and Information Collection System Based on 2D LiDAR and a Gyroscope.
    Zhang C; Yong L; Chen Y; Zhang S; Ge L; Wang S; Li W
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31072051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional Jump Point Search Path-Planning Algorithm Based on Electricity-Guided Navigation Behavior of Electric Eels and Map Preprocessing.
    Gong H; Tan X; Wu Q; Li J; Chu Y; Jiang A; Han H; Zhang K
    Biomimetics (Basel); 2023 Aug; 8(5):. PubMed ID: 37754138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wi-Fi and satellite-based location techniques for intelligent agricultural machinery controlled by a human operator.
    Drenjanac D; Tomic S; Agüera J; Perez-Ruiz M
    Sensors (Basel); 2014 Oct; 14(10):19767-84. PubMed ID: 25340450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments.
    Yang Z; Li J; Yang L; Wang Q; Li P; Xia G
    Math Biosci Eng; 2023 Jan; 20(1):145-178. PubMed ID: 36650761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The integration of GPS and visual navigation for autonomous navigation of an Ackerman steering mobile robot in cotton fields.
    Mwitta C; Rains GC
    Front Robot AI; 2024; 11():1359887. PubMed ID: 38680621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration.
    Chang L; Niu X; Liu T
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity range-based reward shaping technique for effective map-less navigation with LiDAR sensor and deep reinforcement learning.
    Lee H; Jeong J
    Front Neurorobot; 2023; 17():1210442. PubMed ID: 37744086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-row navigation line detection for cotton with broken rows.
    Liang X; Chen B; Wei C; Zhang X
    Plant Methods; 2022 Jul; 18(1):90. PubMed ID: 35780217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.