These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38812972)

  • 1. A sensorimotor enhanced neuromusculoskeletal model for simulating postural control of upright standing.
    Shanbhag J; Fleischmann S; Wechsler I; Gassner H; Winkler J; Eskofier BM; Koelewijn AD; Wartzack S; Miehling J
    Front Neurosci; 2024; 18():1393749. PubMed ID: 38812972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Contribution of Proprioceptive Reflexes to Balance Control in Perturbed Standing.
    Koelewijn AD; Ijspeert AJ
    Front Bioeng Biotechnol; 2020; 8():866. PubMed ID: 32984265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to stand with unexpected sensorimotor delays.
    Rasman BG; Forbes PA; Peters RM; Ortiz O; Franks I; Inglis JT; Chua R; Blouin JS
    Elife; 2021 Aug; 10():. PubMed ID: 34374648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance.
    Vette AH; Masani K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):235-43. PubMed ID: 17601193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.
    Elias LA; Watanabe RN; Kohn AF
    PLoS Comput Biol; 2014 Nov; 10(11):e1003944. PubMed ID: 25393548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for integrating postural control into biomechanical human simulations: a systematic review.
    Shanbhag J; Wolf A; Wechsler I; Fleischmann S; Winkler J; Leyendecker S; Eskofier BM; Koelewijn AD; Wartzack S; Miehling J
    J Neuroeng Rehabil; 2023 Aug; 20(1):111. PubMed ID: 37605197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of muscle short-range stiffness to initial changes in joint kinetics and kinematics during perturbations to standing balance: A simulation study.
    De Groote F; Allen JL; Ting LH
    J Biomech; 2017 Apr; 55():71-77. PubMed ID: 28259465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.
    Selk Ghafari A; Meghdari A; Vossoughi G
    Proc Inst Mech Eng H; 2009 Aug; 223(6):663-75. PubMed ID: 19743633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in leg proprioception: implications for postural control.
    Henry M; Baudry S
    J Neurophysiol; 2019 Aug; 122(2):525-538. PubMed ID: 31166819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensorimotor control of standing balance.
    Forbes PA; Chen A; Blouin JS
    Handb Clin Neurol; 2018; 159():61-83. PubMed ID: 30482333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-dependent force direction elucidates neural control of balance.
    Shiozawa K; Lee J; Russo M; Sternad D; Hogan N
    J Neuroeng Rehabil; 2021 Sep; 18(1):145. PubMed ID: 34563223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral effect of knee joint motion on body's center of mass during human quiet standing.
    Yamamoto A; Sasagawa S; Oba N; Nakazawa K
    Gait Posture; 2015 Jan; 41(1):291-4. PubMed ID: 25248799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postural responses to multidirectional stance perturbations in cerebellar ataxia.
    Bakker M; Allum JH; Visser JE; Grüneberg C; van de Warrenburg BP; Kremer BH; Bloem BR
    Exp Neurol; 2006 Nov; 202(1):21-35. PubMed ID: 16808916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Case Studies in Neuroscience: A dissociation of balance and posture demonstrated by camptocormia.
    St George RJ; Gurfinkel VS; Kraakevik J; Nutt JG; Horak FB
    J Neurophysiol; 2018 Jan; 119(1):33-38. PubMed ID: 28978769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation between individuals in sensorimotor feedback control of standing balance.
    Goodworth A; Felmlee D; Karmali F
    J Neurophysiol; 2023 Aug; 130(2):303-318. PubMed ID: 37380599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of torque feedback in standing balance.
    Missen KJ; Assländer L; Babichuk A; Chua R; Inglis JT; Carpenter MG
    J Neurophysiol; 2023 Sep; 130(3):585-595. PubMed ID: 37492897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach.
    Danna-Dos-Santos A; Degani AM; Boonstra TW; Mochizuki L; Harney AM; Schmeckpeper MM; Tabor LC; Leonard CT
    Exp Brain Res; 2015 Feb; 233(2):657-69. PubMed ID: 25407521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromusculoskeletal torque-generation process has a large destabilizing effect on the control mechanism of quiet standing.
    Masani K; Vette AH; Kawashima N; Popovic MR
    J Neurophysiol; 2008 Sep; 100(3):1465-75. PubMed ID: 18596181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hip and ankle responses for reactive balance emerge from varying priorities to reduce effort and kinematic excursion: A simulation study.
    Versteeg CS; Ting LH; Allen JL
    J Biomech; 2016 Oct; 49(14):3230-3237. PubMed ID: 27543251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy and effort costs together lead to temporal asynchrony of multiple motor commands.
    Tanis D; Calalo JA; Cashaback JGA; Kurtzer IL
    J Neurophysiol; 2023 Jan; 129(1):1-6. PubMed ID: 36448693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.