These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38813222)

  • 1. Optical frequency multiplication using residual network with random forest regression.
    Zhang Q; Han X; Fang X; Liu M; Ge K; Jiang H
    Heliyon; 2024 May; 10(10):e30958. PubMed ID: 38813222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of frequency 32-tupling millimeter-wave based on a dual-parallel polarization modulator.
    Chen X; Liu X; Dai S; Li Z; Ba W; Wang D
    Appl Opt; 2022 Jan; 61(1):294-301. PubMed ID: 35200831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators.
    Zhu Z; Zhao S; Zheng W; Wang W; Lin B
    Appl Opt; 2015 Nov; 54(32):9432-40. PubMed ID: 26560769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method to generate and transmit 40-tupling frequency millimeter wave over fiber based on remodulation of MZMs.
    Chen X; Li Z; Ba W; Dai S; Xu Chen ; Liang J; Xiao H
    Heliyon; 2023 Mar; 9(3):e14221. PubMed ID: 36915484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filterless 16-tupling photonic millimeter-wave generation with Mach-Zehnder modulators using remodulation.
    Bashir Dar A; Ahmad F
    Appl Opt; 2020 Jul; 59(20):6018-6023. PubMed ID: 32672744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filterless radio-over-fiber system that generates 80 and 160  GHz millimeter waves based on two MZMs.
    Huang Z; Cao C; Feng Z; Zeng X; Wu J; Wu Q; Wu Z
    Appl Opt; 2021 Jun; 60(16):4871-4877. PubMed ID: 34143048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic generation of millimeter-wave and multi-waveform signals based on external modulation and polarization control.
    Yuan J; Zhang M; Mei Y; Liu Q; Liu J
    Appl Opt; 2022 Oct; 61(30):8967-8973. PubMed ID: 36607024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation.
    Hasan M; Guemri R; Maldonado-Basilio R; Lucarz F; de Bougrenet de la Tocnaye JL; Hall T
    Opt Lett; 2014 Dec; 39(24):6950-3. PubMed ID: 25503038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote broadband RF signal down-conversion with stable phase and high efficiency using a sideband optical phase-locked loop.
    Li B; Wei W; Han D; Xie W; Dong Y
    Opt Express; 2020 Apr; 28(9):12588-12598. PubMed ID: 32403753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling.
    Vidal B
    Opt Lett; 2012 Dec; 37(24):5055-7. PubMed ID: 23258003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical frequency tripling with improved suppression and sideband selection.
    Thakur MP; Medeiros MC; Laurêncio P; Mitchell JE
    Opt Express; 2011 Dec; 19(26):B457-68. PubMed ID: 22274056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 60 GHz millimeter-wave generator based on a frequency-quadrupling feed-forward modulation technique.
    Li J; Ning T; Pei L; Qi C; Zhou Q; Hu X; Gao S
    Opt Lett; 2010 Nov; 35(21):3619-21. PubMed ID: 21042369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase noise mitigation in photonics-based radio frequency multiplication.
    Secondini M; Bogoni A; Forestieri E; D'Errico A; Bigongiari A; Malacarne A
    Opt Lett; 2023 Mar; 48(5):1228-1231. PubMed ID: 36857255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNR-enhanced and high-order frequency multiplied 64-QAM millimeter-wave signal generation enabled by MZM-based angle modulation.
    Li Z; Xia Y; Cheng M; Yang Q; Tang M; Liu D; Deng L
    Opt Lett; 2023 Apr; 48(8):2106-2109. PubMed ID: 37058653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable optical frequency comb with hundred-GHz spacings generated on a silicon waveguide.
    Zhang Y; Zhang H; Shu C
    Opt Lett; 2022 Jun; 47(12):2987-2990. PubMed ID: 35709032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.
    Lee SH; Kim HJ; Song JI
    Opt Express; 2014 Jan; 22(1):183-92. PubMed ID: 24514980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A continuously tunable and filterless optical millimeter-wave generation via frequency octupling.
    Lin CT; Shih PT; Jiang WJ; Chen JJ; Peng PC; Chi S
    Opt Express; 2009 Oct; 17(22):19749-56. PubMed ID: 19997195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications.
    Kim HJ; Song JI
    Opt Express; 2009 Jun; 17(12):9810-7. PubMed ID: 19506630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible generation of 28 Gbps PAM4 60 GHz/80 GHz radio over fiber signal by injection locking of direct multilevel modulated laser to spacing-tunable two-tone light.
    Lu GW; Luís RS; Toda H; Cui J; Sakamoto T; Wang H; Ji Y; Yamamoto N
    Opt Express; 2018 Aug; 26(16):20603-20613. PubMed ID: 30119369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication.
    Kirchner MS; Braje DA; Fortier TM; Weiner AM; Hollberg L; Diddams SA
    Opt Lett; 2009 Apr; 34(7):872-4. PubMed ID: 19340155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.