These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38814055)
1. Electrosynthesis of Verdoheme and Biliverdin Derivatives Following Enzymatic Pathways. Lashgari A; Wang X; Krause JA; Sinha S; Jiang JJ J Am Chem Soc; 2024 Jun; 146(23):15955-15964. PubMed ID: 38814055 [TBL] [Abstract][Full Text] [Related]
2. Stereoselectivity of each of the three steps of the heme oxygenase reaction: hemin to meso-hydroxyhemin, meso-hydroxyhemin to verdoheme, and verdoheme to biliverdin. Zhang X; Fujii H; Matera KM; Migita CT; Sun D; Sato M; Ikeda-Saito M; Yoshida T Biochemistry; 2003 Jun; 42(24):7418-26. PubMed ID: 12809497 [TBL] [Abstract][Full Text] [Related]
3. Crystal structures of ferrous and ferrous-NO forms of verdoheme in a complex with human heme oxygenase-1: catalytic implications for heme cleavage. Lad L; Ortiz de Montellano PR; Poulos TL J Inorg Biochem; 2004 Nov; 98(11):1686-95. PubMed ID: 15522396 [TBL] [Abstract][Full Text] [Related]
4. A novel mechanism of heme degradation to biliverdin studied by QM/MM and QM calculations. Alavi FS; Gheidi M; Zahedi M; Safari N; Ryde U Dalton Trans; 2018 Jun; 47(25):8283-8291. PubMed ID: 29892759 [TBL] [Abstract][Full Text] [Related]
5. Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxygenase-1. Liu Y; Ortiz de Montellano PR J Biol Chem; 2000 Feb; 275(8):5297-307. PubMed ID: 10681502 [TBL] [Abstract][Full Text] [Related]
6. Separation and identification of the regioisomers of verdoheme by reversed-phase ion-pair high-performance liquid chromatography, and characterization of their complexes with heme oxygenase. Sakamoto H; Omata Y; Adachi Y; Palmer G; Noguchi M J Inorg Biochem; 2000 Nov; 82(1-4):113-21. PubMed ID: 11132617 [TBL] [Abstract][Full Text] [Related]
7. Alkyl peroxides reveal the ring opening mechanism of verdoheme catalyzed by heme oxygenase. Matsui T; Omori K; Jin H; Ikeda-Saito M J Am Chem Soc; 2008 Apr; 130(13):4220-1. PubMed ID: 18331037 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic ring-opening mechanism of verdoheme by the heme oxygenase: a combined X-ray crystallography and QM/MM study. Lai W; Chen H; Matsui T; Omori K; Unno M; Ikeda-Saito M; Shaik S J Am Chem Soc; 2010 Sep; 132(37):12960-70. PubMed ID: 20806922 [TBL] [Abstract][Full Text] [Related]
9. Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme. Unno M; Matsui T; Ikeda-Saito M J Inorg Biochem; 2012 Aug; 113():102-9. PubMed ID: 22673156 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of heme degradation by heme oxygenase. Yoshida T; Migita CT J Inorg Biochem; 2000 Nov; 82(1-4):33-41. PubMed ID: 11132636 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical reduction of ferrous alpha-verdoheme in complex with heme oxygenase-1. Sato H; Higashimoto Y; Sakamoto H; Sugishima M; Takahashi K; Palmer G; Noguchi M J Inorg Biochem; 2007 Oct; 101(10):1394-9. PubMed ID: 17644182 [TBL] [Abstract][Full Text] [Related]
12. Theoretical investigation of the ring opening process of verdoheme to biliverdin in the presence of dioxygen. Gheidi M; Safari N; Zahedi M J Mol Model; 2010 Aug; 16(8):1401-13. PubMed ID: 20157751 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of heme to beta- and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. Caignan GA; Deshmukh R; Wilks A; Zeng Y; Huang HW; Moënne-Loccoz P; Bunce RA; Eastman MA; Rivera M J Am Chem Soc; 2002 Dec; 124(50):14879-92. PubMed ID: 12475329 [TBL] [Abstract][Full Text] [Related]
14. O(2)- and H(2)O(2)-dependent verdoheme degradation by heme oxygenase: reaction mechanisms and potential physiological roles of the dual pathway degradation. Matsui T; Nakajima A; Fujii H; Matera KM; Migita CT; Yoshida T; Ikeda-Saito M J Biol Chem; 2005 Nov; 280(44):36833-40. PubMed ID: 16115896 [TBL] [Abstract][Full Text] [Related]
15. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Wilks A; Ikeda-Saito M Acc Chem Res; 2014 Aug; 47(8):2291-8. PubMed ID: 24873177 [TBL] [Abstract][Full Text] [Related]
16. Catalytic turnover dependent modification of the Pseudomonas aeruginosa heme oxygenase (pa-HO) by 5,6-O-isopropyledine-2-O-allyl-ascorbic acid. Bhakta MN; Olabisi A; Wimalasena K; Wilks A J Inorg Biochem; 2008 Feb; 102(2):251-9. PubMed ID: 17923157 [TBL] [Abstract][Full Text] [Related]
17. Heme oxygenase-1, intermediates in verdoheme formation and the requirement for reduction equivalents. Liu Y; Moënne-Loccoz P; Loehr TM; Ortiz de Montellano PR J Biol Chem; 1997 Mar; 272(11):6909-17. PubMed ID: 9054378 [TBL] [Abstract][Full Text] [Related]
18. Noninnocent effect of axial ligand on the heme degradation process: a theoretical approach to hydrolysis pathway of verdoheme to biliverdin. Jamaat PR; Safari N; Ghiasi M; Naghavi SS; Zahedi M J Biol Inorg Chem; 2008 Jan; 13(1):121-32. PubMed ID: 17955269 [TBL] [Abstract][Full Text] [Related]
20. Molecular oxygen oxidizes the porphyrin ring of the ferric alpha-hydroxyheme in heme oxygenase in the absence of reducing equivalent. Migita CT; Fujii H; Mansfield Matera K; Takahashi S; Zhou H; Yoshida T Biochim Biophys Acta; 1999 Jul; 1432(2):203-13. PubMed ID: 10407142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]